示例#1
0
from core.Layers.conv import conv2d
from core.Layers.pool import max_pool
from core.Layers import relu, dense, flatten, tanh, sigmoid
from core.Modules import sequential
from core.Functions.loss import softmax_cross_entropy

CNN1 = sequential(conv2d(input_shape=(28, 28, 1), output_ch=32, kernel_sz=3),
                  relu(),
                  max_pool(kernel_sz=2),
                  conv2d(output_ch=32, kernel_sz=3),
                  relu(),
                  max_pool(kernel_sz=2),
                  flatten(),
                  dense(output_shape=10),
                  loss_f=softmax_cross_entropy())

CNN2 = sequential(conv2d(input_shape=(28, 28, 1), output_ch=6, kernel_sz=5),
                  relu(),
                  max_pool(kernel_sz=2),
                  conv2d(output_ch=16, kernel_sz=5),
                  relu(),
                  max_pool(kernel_sz=2),
                  flatten(),
                  dense(output_shape=10),
                  loss_f=softmax_cross_entropy())

CNN3 = sequential(conv2d(input_shape=(28, 28, 1), output_ch=1, kernel_sz=2),
                  relu(),
                  max_pool(kernel_sz=2),
                  flatten(),
                  dense(output_shape=10),
示例#2
0
"""
This script tests the performance of our tools
"""
from numba import cuda
from tensorflow import keras
from core.Layers.conv import conv2d
from core.Layers.pool import max_pool
from core.Layers import relu, softmax
from core.Layers import dense
from core.Layers import flatten
import time

conv1 = conv2d((1, 28, 28), output_channel=32, kernel_size=3)
activ1 = relu((3, 26, 26))
pool1 = max_pool(input_dim=(32, 26, 26), kernel_sz=2)
conv2 = conv2d((32, 13, 13), output_channel=32, kernel_size=3)
activ2 = relu((32, 11, 11))
pool2 = max_pool(input_dim=(32, 11, 11), kernel_sz=3)
activ3 = relu((32, 4, 4))
flat = flatten((32, 4, 4))
linear_layer = dense(32 * 4 * 4, 10)
softmax_layer = softmax(10)

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

# origin = np.random.randn(3, 28, 28).astype(np.float32)
input_image = train_images[0, :, :].reshape(1, 28, 28)
input_image_gpu = cuda.to_device(input_image)

cnt = 0