def post(self): '''Make a prediction given input data''' result = {'status': 'error'} args = image_parser.parse_args() image_data = args['image'].read() image = read_image(image_data) label_preds = self.model_wrapper.predict(image) result['predictions'] = label_preds result['status'] = 'ok' return result
def post(self): '''Make a prediction given input data''' result = {'status': 'error'} args = image_parser.parse_args() image_data = args['image'].read() image = read_image(image_data) preds = self.model_wrapper.predict(image) label_preds = [{'label_id': p[0], 'label': p[1], 'probability': p[2]} for p in [x for x in preds]] result['predictions'] = label_preds result['status'] = 'ok' return result
def post(self): """Make a prediction given input data""" result = {'status': 'error'} args = image_parser.parse_args() image_data = args['image'].read() image = read_image(image_data) resized_im, seg_map = self.model_wrapper.predict(image) result['image_size'] = resized_im.size result['seg_map'] = seg_map result['status'] = 'ok' return result
def post(self): """Make a prediction given input data""" result = {'status': 'error'} args = image_parser.parse_args() image_data = args['image'].read() try: image = read_image(image_data) preds = self.model_wrapper.predict(image) label_preds = [{'probability': float(preds)}] result['predictions'] = label_preds result['status'] = 'ok' except ValueError as e: abort(400, str(e)) return result
def post(self): """Make a prediction given input data""" result = {'status': 'error'} args = input_parser.parse_args() try: input_data = args['file'].read() image = read_image(input_data) except OSError as e: abort(400, "Please submit a valid image in PNG, Tiff or JPEG format") label_preds = self.model_wrapper.predict(image) result['predictions'] = label_preds result['status'] = 'ok' return result