def __init__(self, model_path):
     alphabet_unicode = config.alphabet_v2
     self.alphabet = ''.join([chr(uni) for uni in alphabet_unicode])
     # print(len(self.alphabet))
     self.nclass = len(self.alphabet) + 1
     self.model = CRNN(config.imgH, 1, self.nclass, 256)
     self.cuda = False
     
     if torch.cuda.is_available():
         self.cuda = True
         self.model.cuda()
         self.model.load_state_dict({k.replace('module.', ''): v \
                                     for k, v in torch.load(model_path).items()})
     else:
         # self.model = nn.DataParallel(self.model)
         self.model.load_state_dict(torch.load(model_path, map_location='cpu'))
     self.model.eval()
     self.converter = strLabelConverter(self.alphabet)
class PytorchOcr():
    def __init__(self, model_path):
        alphabet_unicode = config.alphabet_v2
        self.alphabet = ''.join([chr(uni) for uni in alphabet_unicode])
        # print(len(self.alphabet))
        self.nclass = len(self.alphabet) + 1
        self.model = CRNN(config.imgH, 1, self.nclass, 256)
        self.cuda = False
        
        if torch.cuda.is_available():
            self.cuda = True
            self.model.cuda()
            self.model.load_state_dict({k.replace('module.', ''): v \
                                        for k, v in torch.load(model_path).items()})
        else:
            # self.model = nn.DataParallel(self.model)
            self.model.load_state_dict(torch.load(model_path, map_location='cpu'))
        self.model.eval()
        self.converter = strLabelConverter(self.alphabet)


    def recognize(self, img):
        h,w = img.shape[:2]
        if len(img.shape) == 3:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        
        image = Image.fromarray(img)
        transformer = resizeNormalize((int(w/h*32), 32))
        image = transformer(image)
        image = image.view(1, *image.size())
        image = Variable(image)

        if self.cuda:
            image = image.cuda()

        preds = self.model(image)
        _, preds = preds.max(2)
        preds = preds.transpose(1, 0).contiguous().view(-1)
        preds_size = Variable(torch.IntTensor([preds.size(0)]))
        txt = self.converter.decode(preds.data, preds_size.data, raw=False).strip()
        return txt
示例#3
0
if __name__ == '__main__':
    # GPU settings
    gpus = tf.config.list_physical_devices("GPU")
    if gpus:
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)

    # dataset
    dataset = Dataset()
    num_classes, blank_index = get_num_classes_and_blank_index()
    train_set, train_size = dataset.train_dataset()
    valid_set, valid_size = dataset.valid_dataset()

    # model
    crnn_model = CRNN(num_classes)

    # loss
    loss = CTCLoss()

    # optimizer
    optimizer = tf.optimizers.Adadelta()

    # metrics
    train_loss_metric = tf.metrics.Mean()
    valid_loss_metric = tf.metrics.Mean()
    accuracy = Accuracy(blank_index)
    train_accuracy = tf.metrics.Mean()
    valid_accuracy = tf.metrics.Mean()

    def train_step(batch_images, batch_labels):
示例#4
0
from configuration import BATCH_SIZE, EPOCHS, save_model_dir, save_frequency

if __name__ == '__main__':
    # GPU settings
    gpus = tf.config.list_physical_devices("GPU")
    if gpus:
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)

    # dataset
    dataset = Dataset()
    train_set, train_size = dataset.train_dataset()
    valid_set, valid_size = dataset.valid_dataset()

    # model
    crnn_model = CRNN()

    # loss
    loss = CTCLoss()

    # optimizer
    optimizer = tf.optimizers.Adadelta()

    # metrics
    train_loss_metric = tf.metrics.Mean()
    valid_loss_metric = tf.metrics.Mean()
    accuracy = Accuracy()
    accuracy_metric = tf.metrics.Mean()

    def train_step(batch_images, batch_labels):
        with tf.GradientTape() as tape:
示例#5
0
from core.utils import get_num_classes_and_blank_index

if __name__ == '__main__':
    # GPU settings
    gpus = tf.config.list_physical_devices("GPU")
    if gpus:
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)

    # dataset
    dataset = Dataset()
    num_classes, blank_index = get_num_classes_and_blank_index()
    test_set, test_size = dataset.test_dataset()

    # model
    crnn_model = CRNN(num_classes)
    crnn_model.load_weights(filepath=Config.save_model_dir+"saved_model")

    # loss and metrics
    loss_object = CTCLoss()
    loss_metric = tf.metrics.Mean()
    test_accuracy = Accuracy(blank_index)
    test_accuracy_metric = tf.metrics.Mean()

    def test_step(batch_images, batch_labels):
        pred = crnn_model(batch_images, training=False)
        loss_value = loss_object(y_true=batch_labels, y_pred=pred)
        acc = test_accuracy(decoded_text=predict_text(pred, blank_index=blank_index), true_label=batch_labels)
        loss_metric.update_state(values=loss_value)
        test_accuracy_metric.update_state(values=acc)
示例#6
0
from core.predict import predict_text
from configuration import save_model_dir

if __name__ == '__main__':
    # GPU settings
    gpus = tf.config.list_physical_devices("GPU")
    if gpus:
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)

    # dataset
    dataset = Dataset()
    test_set, test_size = dataset.test_dataset()

    # model
    crnn_model = CRNN()
    crnn_model.load_weights(filepath=save_model_dir + "saved_model")

    # loss and metrics
    loss_object = CTCLoss()
    loss_metric = tf.metrics.Mean()
    test_accuracy = Accuracy()
    test_accuracy_metric = tf.metrics.Mean()

    def test_step(batch_images, batch_labels, labels_list):
        pred = crnn_model(batch_images, training=False)
        loss_value = loss_object(y_true=batch_labels, y_pred=pred)
        acc = test_accuracy(decoded_text=predict_text(pred),
                            true_label=labels_list)
        loss_metric.update_state(values=loss_value)
        test_accuracy_metric.update_state(values=acc)