def main(): args = parse_args() update_config(args.cfg) # cudnn related setting cudnn.benchmark = cfg.CUDNN.BENCHMARK cudnn.deterministic = cfg.CUDNN.DETERMINISTIC cudnn.enabled = cfg.CUDNN.ENABLE # data loader val_dset = TALDataset(cfg, cfg.DATASET.VAL_SPLIT) val_loader = DataLoader(val_dset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, drop_last=False, num_workers=cfg.BASIC.WORKERS, pin_memory=cfg.DATASET.PIN_MEMORY) model = LocNet(cfg) model.cuda() #evaluate existing model checkpoint = torch.load(args.checkpoint) model.load_state_dict(checkpoint['model']) epoch = checkpoint['epoch'] out_df = evaluation(val_loader, model, epoch, cfg) final_result_process(out_df, epoch, cfg, flag=0)
def main(): args = parse_args() update_config(args.cfg) fix_random_seed(cfg.SEED) # cudnn related setting cudnn.benchmark = cfg.CUDNN.BENCHMARK cudnn.deterministic = cfg.CUDNN.DETERMINISTIC cudnn.enabled = cfg.CUDNN.ENABLE # prepare output directory output_dir = os.path.join(cfg.ROOT_DIR, cfg.TRAIN.MODEL_DIR) if not os.path.exists(output_dir): os.makedirs(output_dir) # copy config ssad.yaml file to output directory cfg_file = os.path.join(output_dir, args.cfg.split('/')[-1]) shutil.copyfile(args.cfg, cfg_file) # data loader # Notice: we discard the last data train_dset = TALDataset(cfg, cfg.DATASET.TRAIN_SPLIT) train_loader = DataLoader(train_dset, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=True, drop_last=False, num_workers=cfg.WORKERS, pin_memory=cfg.PIN_MEMORY) val_dset = TALDataset(cfg, cfg.DATASET.VAL_SPLIT) val_loader = DataLoader(val_dset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, drop_last=False, num_workers=cfg.WORKERS, pin_memory=cfg.PIN_MEMORY) model = LocNet(cfg) model.apply(weight_init) model.cuda() optimizer = optim.Adam(model.parameters(), lr=cfg.TRAIN.LR) for epoch in range(cfg.TRAIN.BEGIN_EPOCH, cfg.TRAIN.END_EPOCH + 1): if epoch in cfg.TRAIN.LR_DECAY_EPOCHS: decay_lr(optimizer, factor=cfg.TRAIN.LR_DECAY_FACTOR) loss_train = train(cfg, train_loader, model, optimizer) print('epoch %d: loss: %f' % (epoch, loss_train)) with open(os.path.join(cfg.ROOT_DIR, cfg.TRAIN.LOG_FILE), 'a') as f: f.write("epoch %d, loss: %.4f\n" % (epoch, loss_train)) if epoch % cfg.TEST.EVAL_INTERVAL == 0: # model weight_file = save_model(cfg, epoch=epoch, model=model, optimizer=optimizer) out_df_af, out_df_ab = evaluation(val_loader, model, epoch, cfg) out_df_ab['conf'] = out_df_ab['conf'] * cfg.TEST.CONCAT_AB out_df = pd.concat([out_df_af, out_df_ab]) post_process(out_df, epoch, cfg, is_soft_nms=False)
def main(): args = parse_args() update_config(args.cfg) # create output directory if cfg.BASIC.CREATE_OUTPUT_DIR: out_dir = os.path.join(cfg.BASIC.ROOT_DIR, cfg.TRAIN.MODEL_DIR) if not os.path.exists(out_dir): os.makedirs(out_dir) # copy config file if cfg.BASIC.BACKUP_CODES: backup_dir = os.path.join(cfg.BASIC.ROOT_DIR, cfg.TRAIN.MODEL_DIR, 'code') backup_codes(cfg.BASIC.ROOT_DIR, backup_dir, cfg.BASIC.BACKUP_LISTS) fix_random_seed(cfg.BASIC.SEED) if cfg.BASIC.SHOW_CFG: pprint.pprint(cfg) # cudnn related setting cudnn.benchmark = cfg.CUDNN.BENCHMARK cudnn.deterministic = cfg.CUDNN.DETERMINISTIC cudnn.enabled = cfg.CUDNN.ENABLE # data loader train_dset = TALDataset(cfg, cfg.DATASET.TRAIN_SPLIT) train_loader = DataLoader(train_dset, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=True, drop_last=False, num_workers=cfg.BASIC.WORKERS, pin_memory=cfg.DATASET.PIN_MEMORY) val_dset = TALDataset(cfg, cfg.DATASET.VAL_SPLIT) val_loader = DataLoader(val_dset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, drop_last=False, num_workers=cfg.BASIC.WORKERS, pin_memory=cfg.DATASET.PIN_MEMORY) model = LocNet(cfg) model.apply(weight_init) model.cuda() optimizer = optim.Adam(model.parameters(), lr=cfg.TRAIN.LR) for epoch in range(cfg.TRAIN.BEGIN_EPOCH, cfg.TRAIN.END_EPOCH + 1): loss_train = train(cfg, train_loader, model, optimizer) print('epoch %d: loss: %f' % (epoch, loss_train)) with open(os.path.join(cfg.BASIC.ROOT_DIR, cfg.TRAIN.LOG_FILE), 'a') as f: f.write("epoch %d, loss: %.4f\n" % (epoch, loss_train)) # decay lr if epoch in cfg.TRAIN.LR_DECAY_EPOCHS: decay_lr(optimizer, factor=cfg.TRAIN.LR_DECAY_FACTOR) if epoch in cfg.TEST.EVAL_INTERVAL: save_model(cfg, epoch=epoch, model=model, optimizer=optimizer) out_df_ab, out_df_af = evaluation(val_loader, model, epoch, cfg) out_df_list = [out_df_ab, out_df_af] final_result_process(out_df_list, epoch, cfg, flag=0)
def main(): args = parse_args() update_config(args.cfg) # create output directory if cfg.BASIC.CREATE_OUTPUT_DIR: out_dir = os.path.join(cfg.BASIC.ROOT_DIR, cfg.TRAIN.MODEL_DIR) if not os.path.exists(out_dir): os.makedirs(out_dir) # copy config file if cfg.BASIC.BACKUP_CODES: backup_dir = os.path.join(cfg.BASIC.ROOT_DIR, cfg.TRAIN.MODEL_DIR, 'code') backup_codes(cfg.BASIC.ROOT_DIR, backup_dir, cfg.BASIC.BACKUP_LISTS) fix_random_seed(cfg.BASIC.SEED) if cfg.BASIC.SHOW_CFG: pprint.pprint(cfg) # cudnn related setting cudnn.benchmark = cfg.CUDNN.BENCHMARK cudnn.deterministic = cfg.CUDNN.DETERMINISTIC cudnn.enabled = cfg.CUDNN.ENABLE # data loader train_dset = TALDataset(cfg, cfg.DATASET.TRAIN_SPLIT) train_loader = DataLoader(train_dset, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=True, drop_last=False, num_workers=cfg.BASIC.WORKERS, pin_memory=cfg.DATASET.PIN_MEMORY) val_dset = TALDataset(cfg, cfg.DATASET.VAL_SPLIT) val_loader = DataLoader(val_dset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, drop_last=False, num_workers=cfg.BASIC.WORKERS, pin_memory=cfg.DATASET.PIN_MEMORY) model = LocNet(cfg) model.apply(weight_init) model.cuda() #evaluate existing model weight_file = '/disk3/zt/code/2_TIP_rebuttal/2_A2Net/output/thumos/output_toy/model_100.pth' epoch = 4 checkpoint = torch.load(weight_file) model.load_state_dict(checkpoint['model']) out_df_ab, out_df_af = evaluation(val_loader, model, epoch, cfg) ''' flag: 0: jointly consider out_df_ab and out_df_af 1: only consider out_df_ab 2: only consider out_df_af ''' # evaluate both branch out_df_list = [out_df_ab, out_df_af] final_result_process(out_df_list, epoch, cfg, flag=0)