def main(args): train_set, valid_set, test_set = prepare_dataset(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set # train_y = get_one_hot(train_y, 2) net = Net([Dense(100), ReLU(), Dense(30), ReLU(), Dense(1)]) model = Model(net=net, loss=SigmoidCrossEntropyLoss(), optimizer=Adam(lr=args.lr)) iterator = BatchIterator(batch_size=args.batch_size) evaluator = AccEvaluator() loss_list = list() for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): pred = model.forward(batch.inputs) loss, grads = model.backward(pred, batch.targets) model.apply_grad(grads) loss_list.append(loss) print("Epoch %d time cost: %.4f" % (epoch, time.time() - t_start)) for timer in model.timers.values(): timer.report() # evaluate model.set_phase("TEST") test_y_idx = np.asarray(test_y).reshape(-1) test_pred = model.forward(test_x) test_pred[test_pred > 0] = 1 test_pred[test_pred <= 0] = 0 test_pred_idx = test_pred.reshape(-1) res = evaluator.evaluate(test_pred_idx, test_y_idx) print(res) model.set_phase("TRAIN")
def main(args): if args.seed >= 0: random_seed(args.seed) train_set, valid_set, test_set = prepare_dataset(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set train_y = get_one_hot(train_y, 10) train_x = Tensor(train_x) train_y = Tensor(train_y) test_x = Tensor(test_x) test_y = Tensor(test_y) net = Net([ Dense(200), ReLU(), Dense(100), ReLU(), Dense(70), ReLU(), Dense(30), ReLU(), Dense(10) ]) model = Model(net=net, loss=SoftmaxCrossEntropyLoss(), optimizer=Adam(lr=args.lr)) loss_layer = SoftmaxCrossEntropyLoss() iterator = BatchIterator(batch_size=args.batch_size) evaluator = AccEvaluator() loss_list = list() for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): model.zero_grad() pred = model.forward(batch.inputs) loss = loss_layer.loss(pred, batch.targets) loss.backward() model.step() loss_list.append(loss.values) print("Epoch %d tim cost: %.4f" % (epoch, time.time() - t_start)) # evaluate model.set_phase("TEST") test_pred = model.forward(test_x) test_pred_idx = np.argmax(test_pred, axis=1) test_y_idx = test_y.values res = evaluator.evaluate(test_pred_idx, test_y_idx) print(res) model.set_phase("TRAIN")
def main(args): if args.seed >= 0: random_seed(args.seed) # create output directory for saving result images if not os.path.exists('./output'): os.mkdir('./output') # define network we are going to load net = Net([ Conv2D(kernel=[5, 5, 1, 6], stride=[1, 1], padding="SAME"), ReLU(), MaxPool2D(pool_size=[2, 2], stride=[2, 2]), Conv2D(kernel=[5, 5, 6, 16], stride=[1, 1], padding="SAME"), ReLU(), MaxPool2D(pool_size=[2, 2], stride=[2, 2]), Flatten(), Dense(120), ReLU(), Dense(84), ReLU(), Dense(10) ]) # load the model model = Model(net=net, loss=SoftmaxCrossEntropyLoss(), optimizer=Adam()) print('loading pre-trained model file', args.model_path) model.load(args.model_path) # create pyplot window for on-the-fly visualization img = np.ones((1, 28, 28, 1)) fig = disp_mnist_batch(img) # actual visualization generations layer_name = 'conv-layer-1' print('[ ' + layer_name + ' ]') images = am_visualize_conv_layer(model, 0, fig) save_batch_as_images('output/{}.png'.format(layer_name), images, title='visualized feature maps for ' + layer_name) layer_name = 'conv-layer-2' print('[ ' + layer_name + ' ]') images = am_visualize_conv_layer(model, 3, fig) save_batch_as_images('output/{}.png'.format(layer_name), images, title='visualized feature maps for ' + layer_name)
def convert_dense(spec, previous_layer): return Dense( name=spec._get_name(), channels=spec.units, use_bias=spec.use_bias, activation=spec.activation, inbound_nodes=[previous_layer], )
def convert_dense(identifier, spec, previous_layer): return Dense( name=identifier, channels=spec.out_features, use_bias=True, activation='linear', inbound_nodes=[previous_layer.name], )
def main(args): if args.seed >= 0: random_seed(args.seed) # data preparing data_path = os.path.join(args.data_dir, args.file_name) train_x, train_y, img_shape = prepare_dataset(data_path) net = Net([ Dense(30), ReLU(), Dense(60), ReLU(), Dense(60), ReLU(), Dense(30), ReLU(), Dense(3), Sigmoid() ]) model = Model(net=net, loss=MSELoss(), optimizer=Adam()) mse_evaluator = MSEEvaluator() iterator = BatchIterator(batch_size=args.batch_size) for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): preds = model.forward(batch.inputs) loss, grads = model.backward(preds, batch.targets) model.apply_grad(grads) # evaluate preds = net.forward(train_x) mse = mse_evaluator.evaluate(preds, train_y) print(mse) if args.paint: # generate painting preds = preds.reshape(img_shape[0], img_shape[1], -1) preds = (preds * 255.0).astype("uint8") filename, ext = os.path.splitext(args.file_name) output_filename = "output" + ext output_path = os.path.join(args.data_dir, output_filename) Image.fromarray(preds).save(output_path) print("Epoch %d time cost: %.2f" % (epoch, time.time() - t_start))
def main(args): train_set, valid_set, test_set = prepare_dataset(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set train_y = get_one_hot(train_y, 10) if args.model_type == "cnn": train_x = train_x.reshape((-1, 28, 28, 1)) test_x = test_x.reshape((-1, 28, 28, 1)) if args.model_type == "cnn": net = Net([ Conv2D(kernel=[5, 5, 1, 8], stride=[2, 2], padding="SAME"), ReLU(), Conv2D(kernel=[5, 5, 8, 16], stride=[2, 2], padding="SAME"), ReLU(), Conv2D(kernel=[5, 5, 16, 32], stride=[2, 2], padding="SAME"), ReLU(), Flatten(), Dense(10) ]) elif args.model_type == "dense": net = Net([ Dense(200), ReLU(), Dense(100), ReLU(), Dense(70), ReLU(), Dense(30), ReLU(), Dense(10) ]) else: raise ValueError( "Invalid argument model_type! Must be 'cnn' or 'dense'") model = Model(net=net, loss=SoftmaxCrossEntropyLoss(), optimizer=Adam(lr=args.lr)) iterator = BatchIterator(batch_size=args.batch_size) evaluator = AccEvaluator() loss_list = list() for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): pred = model.forward(batch.inputs) loss, grads = model.backward(pred, batch.targets) model.apply_grad(grads) loss_list.append(loss) print("Epoch %d time cost: %.4f" % (epoch, time.time() - t_start)) # evaluate model.set_phase("TEST") test_pred = model.forward(test_x) test_pred_idx = np.argmax(test_pred, axis=1) test_y_idx = np.asarray(test_y) res = evaluator.evaluate(test_pred_idx, test_y_idx) print(res) model.set_phase("TRAIN")
def main(args): train_set, valid_set, test_set = prepare_dataset(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set train_y = get_one_hot(train_y, 10) net = Net([ Dense(784, 200), ReLU(), Dense(200, 100), ReLU(), Dense(100, 70), ReLU(), Dense(70, 30), ReLU(), Dense(30, 10) ]) model = Model(net=net, loss=SoftmaxCrossEntropyLoss(), optimizer=Adam(lr=args.lr)) iterator = BatchIterator(batch_size=args.batch_size) evaluator = AccEvaluator() loss_list = list() for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): pred = model.forward(batch.inputs) loss, grads = model.backward(pred, batch.targets) model.apply_grad(grads) loss_list.append(loss) t_end = time.time() # evaluate test_pred = model.forward(test_x) test_pred_idx = np.argmax(test_pred, axis=1) test_y_idx = np.asarray(test_y) res = evaluator.evaluate(test_pred_idx, test_y_idx) print("Epoch %d time cost: %.4f\t %s" % (epoch, t_end - t_start, res))
def build_net(self): q_net = Net([Dense(100), ReLU(), Dense(self.action_dim)]) return q_net
def convert(keras_model, class_map, description="Neural Network Model"): """ Convert a keras model to PMML @model. The keras model object @class_map. A map in the form {class_id: class_name} @description. A short description of the model Returns a DeepNeuralNetwork object which can be exported to PMML """ pmml = DeepNetwork(description=description, class_map=class_map) pmml.keras_model = keras_model pmml.model_name = keras_model.name config = keras_model.get_config() for layer in config['layers']: layer_class = layer['class_name'] layer_config = layer['config'] layer_inbound_nodes = layer['inbound_nodes'] # Input if layer_class is "InputLayer": pmml._append_layer( InputLayer(name=layer_config['name'], input_size=layer_config['batch_input_shape'][1:])) # Conv2D elif layer_class is "Conv2D": pmml._append_layer( Conv2D( name=layer_config['name'], channels=layer_config['filters'], kernel_size=layer_config['kernel_size'], dilation_rate=layer_config['dilation_rate'], use_bias=layer_config['use_bias'], activation=layer_config['activation'], strides=layer_config['strides'], padding=layer_config['padding'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) # DepthwiseConv2D elif layer_class is "DepthwiseConv2D": pmml._append_layer( DepthwiseConv2D( name=layer_config['name'], kernel_size=layer_config['kernel_size'], depth_multiplier=layer_config['depth_multiplier'], use_bias=layer_config['use_bias'], activation=layer_config['activation'], strides=layer_config['strides'], padding=layer_config['padding'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) # MaxPooling elif layer_class is "MaxPooling2D": pmml._append_layer( MaxPooling2D( name=layer_config['name'], pool_size=layer_config['pool_size'], strides=layer_config['strides'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) elif layer_class is "AveragePooling2D": pmml._append_layer( AveragePooling2D( name=layer_config['name'], pool_size=layer_config['pool_size'], strides=layer_config['strides'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) elif layer_class is "GlobalAveragePooling2D": pmml._append_layer( GlobalAveragePooling2D( name=layer_config['name'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) # Flatten elif layer_class is "Flatten": pmml._append_layer( Flatten( name=layer_config['name'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) # Dense elif layer_class is "Dense": pmml._append_layer( Dense( name=layer_config['name'], channels=layer_config['units'], use_bias=layer_config['use_bias'], activation=layer_config['activation'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) # Zero padding layer elif layer_class is "ZeroPadding2D": pmml._append_layer( ZeroPadding2D( name=layer_config['name'], padding=layer_config['padding'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) # Reshape layer elif layer_class is "Reshape": pmml._append_layer( Reshape( name=layer_config['name'], target_shape=layer_config['target_shape'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) elif layer_class is "Dropout": pmml._append_layer( Dropout( name=layer_config['name'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) # Batch Normalization elif layer_class is "BatchNormalization": pmml._append_layer( BatchNormalization( name=layer_config['name'], axis=layer_config['axis'], momentum=layer_config['momentum'], epsilon=layer_config['epsilon'], center=layer_config['center'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) elif layer_class is "Add": pmml._append_layer( Merge(name=layer_config['name'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes))) elif layer_class is "Subtract": pmml._append_layer( Merge(name=layer_config['name'], operator='subtract', inbound_nodes=get_inbound_nodes(layer_inbound_nodes))) elif layer_class is "Dot": pmml._append_layer( Merge(name=layer_config['name'], operator='dot', inbound_nodes=get_inbound_nodes(layer_inbound_nodes))) elif layer_class is "Concatenate": pmml._append_layer( Merge(name=layer_config['name'], axis=layer_config['axis'], operator='concatenate', inbound_nodes=get_inbound_nodes(layer_inbound_nodes))) elif layer_class is "Activation": pmml._append_layer( Activation( name=layer_config['name'], activation=layer_config['activation'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) elif layer_class is "ReLU": pmml._append_layer( Activation( name=layer_config['name'], activation='relu', threshold=layer_config['threshold'], max_value=layer_config['max_value'], negative_slope=layer_config['negative_slope'], inbound_nodes=get_inbound_nodes(layer_inbound_nodes), )) # Unknown layer else: raise ValueError("Unknown layer type:", layer_class) return pmml
from core.layers import Dense, Dropout, Conv2D, Flatten, ReLU, Softmax, MaxPooling2D from core.model import Model from core.utils import load_mnist from core.optimizer import SGD from core.loss import CategoricalCrossEntropy import matplotlib.pyplot as plt np.random.seed(1234) model = Model() model.add(Conv2D(filters=1, shape=(28, 28, 1), kernel_size=(3, 3))) model.add(ReLU()) model.add(MaxPooling2D(shape=(2, 2))) model.add(Flatten()) model.add(Dense(shape=(169, 128))) #676 model.add(ReLU()) model.add(Dense(shape=(128, 10))) model.add(Softmax()) model.compile(optimizer=SGD(lr=0.01), loss=CategoricalCrossEntropy()) (x, y), (x_test, y_test) = load_mnist() x = x.reshape(x.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) train_loss_cnn, train_acc_cnn, val_loss_cnn, val_acc_cnn = model.fit( x, y, x_test, y_test, epoch=10, batch_size=32) plt.plot(train_acc_cnn, label='cnn train accuracy') plt.plot(val_acc_cnn, label='cnn val accuracy')
import numpy as np from core.layers import Dense, Dropout, ReLU, Softmax from core.model import Model from core.utils import load_mnist from core.optimizer import SGD from core.loss import CategoricalCrossEntropy import matplotlib.pyplot as plt np.random.seed(1234) model = Model() model.add(Dense(shape=(784, 512))) model.add(ReLU()) model.add(Dropout(0.2)) model.add(Dense(shape=(512, 512))) model.add(ReLU()) model.add(Dropout(0.2)) model.add(Dense(shape=(512, 10))) model.add(Softmax()) model.compile(optimizer=SGD(lr=0.001), loss=CategoricalCrossEntropy()) (x, y), (x_test, y_test) = load_mnist() train_loss, train_acc, val_loss, val_acc = model.fit(x, y, x_test, y_test, epoch=10, batch_size=128) plt.plot(train_acc, label='train loss')
def main(args): if args.seed >= 0: random_seed(args.seed) # create output directory for saving result images if not os.path.exists('./output'): os.mkdir('./output') # prepare and read dataset train_set, valid_set, test_set = prepare_dataset(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set # batch iterator iterator = BatchIterator(batch_size=args.batch_size) # specify the encoder and decoder net structure encoder = Net([Dense(256), ReLU(), Dense(64)]) decoder = Net([ReLU(), Dense(256), Tanh(), Dense(784), Tanh()]) # create AutoEncoder model model = AutoEncoder(encoder=encoder, decoder=decoder, loss=MSELoss(), optimizer=Adam(args.lr)) # for pretrained model, test generated images from latent space if args.load_model is not None: # load pretrained model model.load(args.load_model) print('Loaded model from %s' % args.load_model) # transition from test[from_idx] to test[to_idx] in n steps idx_arr, n = [2, 4, 32, 12, 82], 160 print("Transition in numbers", [test_y[i] for i in idx_arr], "in %d steps ..." % n) stops = [model.encoder.forward(test_x[i]) for i in idx_arr] k = int(n / (len(idx_arr) - 1)) # number of code per transition # generate all transition codes code_arr = [] for i in range(len(stops) - 1): t = [c.copy() for c in transition(stops[i], stops[i + 1], k)] code_arr += t # apply decoding all n "code" from latent space... batch = None for code in code_arr: # translate latent space to image genn = model.decoder.forward(code) # save decoded results in a batch if batch is None: batch = np.array(genn) else: batch = np.concatenate((batch, genn)) save_batch_as_images('output/genn-latent.png', batch) quit() # train the autoencoder for epoch in range(args.num_ep): print('epoch %d ...' % epoch) for batch in iterator(train_x, train_y): origin_in = batch.inputs # make noisy inputs m = origin_in.shape[0] # batch size mu = args.guassian_mean # mean sigma = args.guassian_std # standard deviation noises = np.random.normal(mu, sigma, (m, 784)) noises_in = origin_in + noises # noisy inputs # train the representation genn = model.forward(noises_in) loss, grads = model.backward(genn, origin_in) model.apply_grad(grads) print('Loss: %.3f' % loss) # save all the generated images and original inputs for this batch save_batch_as_images('output/ep%d-input.png' % epoch, noises_in, titles=batch.targets) save_batch_as_images('output/ep%d-genn.png' % epoch, genn, titles=batch.targets) # save the model after training model.save('output/model.pkl')