示例#1
0
def train():
    config = MyMaskRcnnConfig()
    config.display()

    dataset_train, dataset_val = get_datasets()

    # Create model in training mode
    model = modellib.MaskRCNN(mode="training",
                              config=config,
                              model_dir=MODEL_DIR)

    # Which weights to start with?
    init_with = "coco"  # imagenet, coco, or last

    if init_with == "imagenet":
        model.load_weights(model.get_imagenet_weights(), by_name=True)
    elif init_with == "coco":
        if not os.path.isfile(COCO_MODEL_PATH):
            utils.download_trained_weights(COCO_MODEL_PATH)
        # Load weights trained on MS COCO, but skip layers that
        # are different due to the different number of classes
        # See README for instructions to download the COCO weights
        model.load_weights(COCO_MODEL_PATH,
                           by_name=True,
                           exclude=[
                               "mrcnn_class_logits", "mrcnn_bbox_fc",
                               "mrcnn_bbox", "mrcnn_mask"
                           ])
    elif init_with == "last":
        # Load the last model you trained and continue training
        print(model.find_last()[1])
        model.load_weights(model.find_last()[1], by_name=True)

    if init_with != "last":
        # Training - Stage 1
        # Adjust epochs and layers as needed
        print("Training network heads")
        model.train(train_dataset=dataset_train,
                    val_dataset=dataset_val,
                    learning_rate=config.LEARNING_RATE,
                    epochs=10,
                    layers='heads')
        model.keras_model.save_weights(os.path.join(MODEL_DIR, "stage1.h5"),
                                       overwrite=True)

        # Training - Stage 2
        # Finetune layers from ResNet stage 4 and up
        print("Training Resnet layer 3+")
        model.train(train_dataset=dataset_train,
                    val_dataset=dataset_val,
                    learning_rate=config.LEARNING_RATE / 10,
                    epochs=100,
                    layers='3+')
        model.keras_model.save_weights(os.path.join(MODEL_DIR, "stage2.h5"),
                                       overwrite=True)
class Predictor:
    config = MyMaskRcnnConfig()

    class InferenceConfig(config.__class__):
        # Run detection on one image at a time
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1
        IMAGE_MIN_DIM = 256
        IMAGE_MAX_DIM = 256

    def __init__(self, weights_path: str):
        if not os.path.isfile(weights_path):
            raise RuntimeError(
                "Weights cannot be found at: {}".format(weights_path))
        self.weights_path = weights_path
        self._model = None

    def predict_array(self, img_data: np.ndarray, extent=None, do_rectangularization=True, tile=None) \
            -> List[List[Tuple[int, int]]]:
        if not self._model:
            print("Loading model")
            inference_config = self.InferenceConfig()
            # Create model in training mode
            model = modellib.MaskRCNN(mode="inference",
                                      config=inference_config,
                                      model_dir="log")
            model.load_weights(self.weights_path, by_name=True)
            self._model = model

        model = self._model
        print("Predicting...")
        res = model.detect([img_data], verbose=1)
        print("Prediction done")
        print("Extracting contours...")
        point_sets = self._get_contours(masks=res[0]['masks'])
        print("Contours extracted")

        point_sets_mapped = []
        col, row = tile
        for points in point_sets:
            pp = list(
                map(lambda p: (p[0] + col * 256, p[1] + row * 256), points))
            if pp:
                point_sets_mapped.append(pp)
        point_sets = point_sets_mapped

        rectangularized_outlines = []
        if do_rectangularization:
            point_sets = list(
                map(lambda point_set: rectangularize(point_set), point_sets))
        if not extent:
            rectangularized_outlines = point_sets
        else:
            for o in point_sets:
                georeffed = georeference(o, extent)
                if georeffed:
                    rectangularized_outlines.append(georeffed)
        return rectangularized_outlines

    def predict_path(self,
                     img_path: str,
                     extent=None) -> List[List[Tuple[int, int]]]:
        img = Image.open(img_path)
        data = np.asarray(img, dtype="uint8")
        return self.predict_array(img_data=data, extent=extent)

    @staticmethod
    def _get_contours(masks: np.ndarray) -> List[List[Tuple[int, int]]]:
        contours: List[List[Tuple[int, int]]] = []
        for i in range(masks.shape[-1]):
            mask = masks[:, :, i]
            if mask.any():
                conts = find_contours(mask, 0.5)
                for c in conts:
                    rr, cc = polygon_perimeter(c[:, 0],
                                               c[:, 1],
                                               shape=mask.shape,
                                               clip=False)
                    points = tuple(zip(cc, rr))
                    contours.append(points)
        return contours
class Predictor:
    config = MyMaskRcnnConfig()

    class InferenceConfig(config.__class__):
        # Run detection on one image at a time
        GPU_COUNT = 1
        # IMAGES_PER_GPU = 30
        IMAGES_PER_GPU = 1
        IMAGE_MIN_DIM = 256
        IMAGE_MAX_DIM = 256

    def __init__(self, weights_path: str):
        if not os.path.isfile(weights_path):
            raise RuntimeError("Weights cannot be found at: {}".format(weights_path))
        self.weights_path = weights_path
        self._model = None

    def predict_arrays(self, images: List[Tuple[np.ndarray, str]], verbose=1) -> List:
        batch_size = 30

        if not self._model:
            print("Loading model")
            inference_config = self.InferenceConfig()
            inference_config.BATCH_SIZE = batch_size
            inference_config.IMAGES_PER_GPU = batch_size
            print("Predicting {} images".format(len(images)))
            # Create model in training mode
            model = modellib.MaskRCNN(mode="inference", config=inference_config, model_dir="log")
            model.load_weights(self.weights_path, by_name=True)
            self._model = model

        model = self._model
        batches = int(math.ceil(len(images) / batch_size))
        all_point_sets = []
        for i in range(batches):
            start = i * batch_size
            end = start + batch_size
            img_with_id_batch = images[start:end]
            if len(img_with_id_batch) < batch_size:
                inference_config = self.InferenceConfig()
                inference_config.BATCH_SIZE = len(img_with_id_batch)
                inference_config.IMAGES_PER_GPU = len(img_with_id_batch)
                model = modellib.MaskRCNN(mode="inference", config=inference_config, model_dir="log")
                model.load_weights(self.weights_path, by_name=True)
            print("Predicting batch {}/{}".format(i+1, batches))
            img_batch = list(map(lambda i: i[0], img_with_id_batch))
            id_batch = list(map(lambda i: i[1], img_with_id_batch))
            results = model.detect(img_batch, image_ids=id_batch, verbose=verbose)
            print("Extracting contours...")
            for res in results:
                point_sets = get_contours(masks=res['masks'], classes=res['class_ids'])
                image_id = res['coco_id']
                for points, class_name in point_sets:
                    all_point_sets.append((points, image_id, class_name))
            print("Contours extracted")
        K.clear_session()
        return all_point_sets

    def predict_path(self, img_path: str, verbose=1) -> List[List[Tuple[int, int]]]:
        return self.predict_paths([img_path], verbose=verbose)

    def predict_paths(self, all_paths: List[str], verbose=1) -> List[List[Tuple[int, int]]]:
        all_images = []
        for p in all_paths:
            data = cv2.imread(p)
            coco_img_id = int(os.path.basename(p).replace(".jpg", ""))
            all_images.append((data, coco_img_id))
        return self.predict_arrays(images=all_images, verbose=verbose)
示例#4
0
class Predictor:
    config = MyMaskRcnnConfig()

    class InferenceConfig(config.__class__):
        # Run detection on one image at a time
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1
        IMAGE_MIN_DIM = IMAGE_WIDTH
        IMAGE_MAX_DIM = IMAGE_WIDTH

    def __init__(self, weights_path: str):
        if not os.path.isfile(weights_path):
            raise RuntimeError(
                "Weights cannot be found at: {}".format(weights_path))
        self.weights_path = weights_path
        self._model = None

    def predict_array(self, img_data: np.ndarray, extent=None, do_rectangularization=True, tile=None) \
            -> List[List[Tuple[int, int]]]:
        if not tile:
            tile = (0, 0)

        if not self._model:
            print("Loading model")
            inference_config = self.InferenceConfig()
            # Create model in training mode
            model = modellib.MaskRCNN(mode="inference",
                                      config=inference_config,
                                      model_dir="log")
            model.load_weights(self.weights_path, by_name=True)
            self._model = model

        model = self._model
        print("Predicting...")
        res = model.detect([img_data], verbose=1)
        print("Prediction done")
        print("Extracting contours...")
        point_sets = get_contours(masks=res[0]['masks'])
        point_sets = list(map(lambda point_set: list(point_set), point_sets))
        print("Contours extracted")

        rectangularized_outlines = []
        if do_rectangularization:
            point_sets = list(
                map(lambda point_set: rectangularize(point_set), point_sets))

        point_sets_mapped = []
        col, row = tile
        for points in point_sets:
            pp = list(
                map(lambda p: (p[0] + col * 256, p[1] + row * 256), points))
            if pp:
                point_sets_mapped.append(pp)
        point_sets = point_sets_mapped

        if not extent:
            rectangularized_outlines = point_sets
        else:
            for o in point_sets:
                georeffed = georeference(o, extent)
                if georeffed:
                    rectangularized_outlines.append(georeffed)
        return rectangularized_outlines

    def predict_path(self,
                     img_path: str,
                     extent=None) -> List[List[Tuple[int, int]]]:
        img = Image.open(img_path)
        data = np.asarray(img, dtype="uint8")
        return self.predict_array(img_data=data, extent=extent)