class MultiTD3(object): """Classes implementing TD3 and DDPG off-policy learners Parameters: args (object): Parameter class """ def __init__(self, id, algo_name, state_dim, action_dim, hidden_size, actor_lr, critic_lr, gamma, tau, savetag, foldername, actualize, use_gpu, num_agents, init_w = True): self.algo_name = algo_name; self.gamma = gamma; self.tau = tau; self.total_update = 0; self.agent_id = id; self.actualize = actualize; self.use_gpu = use_gpu self.tracker = utils.Tracker(foldername, ['q_'+savetag, 'qloss_'+savetag, 'policy_loss_'+savetag, 'alz_score'+savetag,'alz_policy'+savetag], '.csv', save_iteration=1000, conv_size=1000) #Initialize actors self.policy = MultiHeadActor(state_dim, action_dim, hidden_size, num_agents) if init_w: self.policy.apply(utils.init_weights) self.policy_target = MultiHeadActor(state_dim, action_dim, hidden_size, num_agents) utils.hard_update(self.policy_target, self.policy) self.policy_optim = Adam(self.policy.parameters(), actor_lr) self.critic = QNetwork(state_dim, action_dim,hidden_size) if init_w: self.critic.apply(utils.init_weights) self.critic_target = QNetwork(state_dim, action_dim, hidden_size) utils.hard_update(self.critic_target, self.critic) self.critic_optim = Adam(self.critic.parameters(), critic_lr) if actualize: self.ANetwork = ActualizationNetwork(state_dim, action_dim, hidden_size) if init_w: self.ANetwork.apply(utils.init_weights) self.actualize_optim = Adam(self.ANetwork.parameters(), critic_lr) self.actualize_lr = 0.2 if use_gpu: self.ANetwork.cuda() self.loss = nn.MSELoss() if use_gpu: self.policy_target.cuda(); self.critic_target.cuda(); self.policy.cuda(); self.critic.cuda() self.num_critic_updates = 0 #Statistics Tracker #self.action_loss = {'min':None, 'max': None, 'mean':None, 'std':None} self.policy_loss = {'min':None, 'max': None, 'mean':None, 'std':None} self.q_loss = {'min':None, 'max': None, 'mean':None, 'std':None} self.q = {'min':None, 'max': None, 'mean':None, 'std':None} self.alz_score = {'min':None, 'max': None, 'mean':None, 'std':None} self.alz_policy = {'min':None, 'max': None, 'mean':None, 'std':None} #self.val = {'min':None, 'max': None, 'mean':None, 'std':None} #self.value_loss = {'min':None, 'max': None, 'mean':None, 'std':None} def update_parameters(self, state_batch, next_state_batch, action_batch, reward_batch, done_batch, global_reward, agent_id, num_epoch=1, **kwargs): """Runs a step of Bellman upodate and policy gradient using a batch of experiences Parameters: state_batch (tensor): Current States next_state_batch (tensor): Next States action_batch (tensor): Actions reward_batch (tensor): Rewards done_batch (tensor): Done batch num_epoch (int): Number of learning iteration to run with the same data Returns: None """ if isinstance(state_batch, list): state_batch = torch.cat(state_batch); next_state_batch = torch.cat(next_state_batch); action_batch = torch.cat(action_batch); reward_batch = torch.cat(reward_batch). done_batch = torch.cat(done_batch); global_reward = torch.cat(global_reward) for _ in range(num_epoch): ########### CRITIC UPDATE #################### #Compute next q-val, next_v and target with torch.no_grad(): #Policy Noise policy_noise = np.random.normal(0, kwargs['policy_noise'], (action_batch.size()[0], action_batch.size()[1])) policy_noise = torch.clamp(torch.Tensor(policy_noise), -kwargs['policy_noise_clip'], kwargs['policy_noise_clip']) #Compute next action_bacth next_action_batch = self.policy_target.clean_action(next_state_batch, agent_id) + policy_noise.cuda() if self.use_gpu else policy_noise next_action_batch = torch.clamp(next_action_batch, -1, 1) #Compute Q-val and value of next state masking by done q1, q2 = self.critic_target.forward(next_state_batch, next_action_batch) q1 = (1 - done_batch) * q1 q2 = (1 - done_batch) * q2 #next_val = (1 - done_batch) * next_val #Select which q to use as next-q (depends on algo) if self.algo_name == 'TD3' or self.algo_name == 'TD3_actor_min': next_q = torch.min(q1, q2) elif self.algo_name == 'DDPG': next_q = q1 elif self.algo_name == 'TD3_max': next_q = torch.max(q1, q2) #Compute target q and target val target_q = reward_batch + (self.gamma * next_q) #if self.args.use_advantage: target_val = reward_batch + (self.gamma * next_val) if self.actualize: ##########Actualization Network Update current_Ascore = self.ANetwork.forward(state_batch, action_batch) utils.compute_stats(current_Ascore, self.alz_score) target_Ascore = (self.actualize_lr) * (global_reward * 10.0) + (1 - self.actualize_lr) * current_Ascore.detach() actualize_loss = self.loss(target_Ascore, current_Ascore).mean() self.critic_optim.zero_grad() current_q1, current_q2 = self.critic.forward((state_batch), (action_batch)) utils.compute_stats(current_q1, self.q) dt = self.loss(current_q1, target_q) # if self.args.use_advantage: # dt = dt + self.loss(current_val, target_val) # utils.compute_stats(current_val, self.val) if self.algo_name == 'TD3' or self.algo_name == 'TD3_max': dt = dt + self.loss(current_q2, target_q) utils.compute_stats(dt, self.q_loss) # if self.args.critic_constraint: # if dt.item() > self.args.critic_constraint_w: # dt = dt * (abs(self.args.critic_constraint_w / dt.item())) dt.backward() self.critic_optim.step() self.num_critic_updates += 1 if self.actualize: self.actualize_optim.zero_grad() actualize_loss.backward() self.actualize_optim.step() #Delayed Actor Update if self.num_critic_updates % kwargs['policy_ups_freq'] == 0: actor_actions = self.policy.clean_action(state_batch, agent_id) # # Trust Region constraint # if self.args.trust_region_actor: # with torch.no_grad(): old_actor_actions = self.actor_target.forward(state_batch) # actor_actions = action_batch - old_actor_actions Q1, Q2 = self.critic.forward(state_batch, actor_actions) # if self.args.use_advantage: policy_loss = -(Q1 - val) policy_loss = -Q1 utils.compute_stats(-policy_loss,self.policy_loss) policy_loss = policy_loss.mean() ###Actualzie Policy Update if self.actualize: A1 = self.ANetwork.forward(state_batch, actor_actions) utils.compute_stats(A1, self.alz_policy) policy_loss += -A1.mean() self.policy_optim.zero_grad() policy_loss.backward(retain_graph=True) #nn.utils.clip_grad_norm_(self.actor.parameters(), 10) # if self.args.action_loss: # action_loss = torch.abs(actor_actions-0.5) # utils.compute_stats(action_loss, self.action_loss) # action_loss = action_loss.mean() * self.args.action_loss_w # action_loss.backward() # #if self.action_loss[-1] > self.policy_loss[-1]: self.args.action_loss_w *= 0.9 #Decay action_w loss if action loss is larger than policy gradient loss self.policy_optim.step() # if self.args.hard_update: # if self.num_critic_updates % self.args.hard_update_freq == 0: # if self.num_critic_updates % self.args.policy_ups_freq == 0: self.hard_update(self.actor_target, self.actor) # self.hard_update(self.critic_target, self.critic) if self.num_critic_updates % kwargs['policy_ups_freq'] == 0: utils.soft_update(self.policy_target, self.policy, self.tau) utils.soft_update(self.critic_target, self.critic, self.tau) self.total_update += 1 if self.agent_id == 0: self.tracker.update([self.q['mean'], self.q_loss['mean'], self.policy_loss['mean'],self.alz_score['mean'], self.alz_policy['mean']] ,self.total_update)
class MATD3(object): """Classes implementing TD3 and DDPG off-policy learners Parameters: args (object): Parameter class """ def __init__(self, id, algo_name, state_dim, action_dim, hidden_size, actor_lr, critic_lr, gamma, tau, savetag, foldername, actualize, use_gpu, num_agents, init_w = True): self.algo_name = algo_name; self.gamma = gamma; self.tau = tau; self.total_update = 0; self.agent_id = id;self.use_gpu = use_gpu self.tracker = utils.Tracker(foldername, ['q_'+savetag, 'qloss_'+savetag, 'policy_loss_'+savetag], '.csv', save_iteration=1000, conv_size=1000) self.num_agents = num_agents #Initialize actors self.policy = MultiHeadActor(state_dim, action_dim, hidden_size, num_agents) if init_w: self.policy.apply(utils.init_weights) self.policy_target = MultiHeadActor(state_dim, action_dim, hidden_size, num_agents) utils.hard_update(self.policy_target, self.policy) self.policy_optim = Adam(self.policy.parameters(), actor_lr) self.critics = [QNetwork(state_dim*num_agents, action_dim*num_agents, hidden_size*2) for _ in range(num_agents)] self.critics_target = [QNetwork(state_dim*num_agents, action_dim*num_agents, hidden_size*2) for _ in range(num_agents)] if init_w: for critic, critic_target in zip(self.critics, self.critics_target): critic.apply(utils.init_weights) utils.hard_update(critic_target, critic) self.critic_optims = [Adam(critic.parameters(), critic_lr) for critic in self.critics] self.loss = nn.MSELoss() if use_gpu: self.policy_target.cuda(); self.policy.cuda() for critic, critic_target in zip(self.critics, self.critics_target): critic.cuda() critic_target.cuda() self.num_critic_updates = 0 #Statistics Tracker #self.action_loss = {'min':None, 'max': None, 'mean':None, 'std':None} self.policy_loss = {'min':None, 'max': None, 'mean':None, 'std':None} self.q_loss = {'min':None, 'max': None, 'mean':None, 'std':None} self.q = {'min':None, 'max': None, 'mean':None, 'std':None} def update_parameters(self, state_batch, next_state_batch, action_batch, reward_batch, done_batch, agent_id, num_epoch=1, **kwargs): """Runs a step of Bellman upodate and policy gradient using a batch of experiences Parameters: state_batch (tensor): Current States next_state_batch (tensor): Next States action_batch (tensor): Actions reward_batch (tensor): Rewards done_batch (tensor): Done batch num_epoch (int): Number of learning iteration to run with the same data Returns: None """ if isinstance(state_batch, list): state_batch = torch.cat(state_batch); next_state_batch = torch.cat(next_state_batch); action_batch = torch.cat(action_batch); reward_batch = torch.cat(reward_batch). done_batch = torch.cat(done_batch) batch_size = len(state_batch) for _ in range(num_epoch): ########### CRITIC UPDATE #################### #Compute next q-val, next_v and target with torch.no_grad(): #Compute next action_bacth next_action_batch = torch.cat([self.policy_target.clean_action(next_state_batch[:, id, :], id) for id in range(self.num_agents)], 1) if self.algo_name == 'TD3': # Policy Noise policy_noise = np.random.normal(0, kwargs['policy_noise'], (action_batch.size()[0], action_batch.size()[1] * action_batch.size()[2])) policy_noise = torch.clamp(torch.Tensor(policy_noise), -kwargs['policy_noise_clip'], kwargs['policy_noise_clip']) next_action_batch += policy_noise.cuda() if self.use_gpu else policy_noise next_action_batch = torch.clamp(next_action_batch, -1, 1) #Compute Q-val and value of next state masking by done q1, q2 = self.critics_target[agent_id].forward(next_state_batch.view(batch_size, -1), next_action_batch) q1 = (1 - done_batch) * q1 q2 = (1 - done_batch) * q2 #next_val = (1 - done_batch) * next_val #Select which q to use as next-q (depends on algo) if self.algo_name == 'TD3':next_q = torch.min(q1, q2) elif self.algo_name == 'DDPG': next_q = q1 #Compute target q and target val target_q = reward_batch[:,agent_id].unsqueeze(1) + (self.gamma * next_q) #if self.args.use_advantage: target_val = reward_batch + (self.gamma * next_val) self.critic_optims[agent_id].zero_grad() current_q1, current_q2 = self.critics[agent_id].forward((state_batch.view(batch_size, -1)), (action_batch.view(batch_size, -1))) utils.compute_stats(current_q1, self.q) dt = self.loss(current_q1, target_q) # if self.args.use_advantage: # dt = dt + self.loss(current_val, target_val) # utils.compute_stats(current_val, self.val) if self.algo_name == 'TD3': dt = dt + self.loss(current_q2, target_q) utils.compute_stats(dt, self.q_loss) # if self.args.critic_constraint: # if dt.item() > self.args.critic_constraint_w: # dt = dt * (abs(self.args.critic_constraint_w / dt.item())) dt.backward() self.critic_optims[agent_id].step() self.num_critic_updates += 1 #Delayed Actor Update if self.num_critic_updates % kwargs['policy_ups_freq'] == 0 or self.algo_name == 'DDPG': agent_action = self.policy.clean_action(state_batch[:,agent_id,:], agent_id) joint_action = action_batch.clone() joint_action[:,agent_id,:] = agent_action[:] #print(np.max(torch.abs(joint_action - action_batch).detach().cpu().numpy()), np.max(torch.abs(joint_action[:,agent_id,:] - agent_action).detach().cpu().numpy())) # # Trust Region constraint # if self.args.trust_region_actor: # with torch.no_grad(): old_actor_actions = self.actor_target.forward(state_batch) # actor_actions = action_batch - old_actor_actions Q1, Q2 = self.critics[agent_id].forward(state_batch.view(batch_size, -1), joint_action.view(batch_size, -1)) # if self.args.use_advantage: policy_loss = -(Q1 - val) policy_loss = -Q1 utils.compute_stats(-policy_loss,self.policy_loss) policy_loss = policy_loss.mean() self.policy_optim.zero_grad() policy_loss.backward(retain_graph=True) #nn.utils.clip_grad_norm_(self.actor.parameters(), 10) # if self.args.action_loss: # action_loss = torch.abs(actor_actions-0.5) # utils.compute_stats(action_loss, self.action_loss) # action_loss = action_loss.mean() * self.args.action_loss_w # action_loss.backward() # #if self.action_loss[-1] > self.policy_loss[-1]: self.args.action_loss_w *= 0.9 #Decay action_w loss if action loss is larger than policy gradient loss self.policy_optim.step() # if self.args.hard_update: # if self.num_critic_updates % self.args.hard_update_freq == 0: # if self.num_critic_updates % self.args.policy_ups_freq == 0: self.hard_update(self.actor_target, self.actor) # self.hard_update(self.critic_target, self.critic) if self.num_critic_updates % kwargs['policy_ups_freq'] == 0 or self.algo_name == 'DDPG': utils.soft_update(self.policy_target, self.policy, self.tau) for critic, critic_target in zip(self.critics, self.critics_target): utils.soft_update(critic_target, critic, self.tau) self.total_update += 1 if self.agent_id == 0: self.tracker.update([self.q['mean'], self.q_loss['mean'], self.policy_loss['mean']] ,self.total_update)
class MultiTD3(object): """Classes implementing TD3 and DDPG off-policy learners """ def __init__(self, id, algo_name, state_dim, action_dim, hidden_size, actor_lr, critic_lr, gamma, tau, savetag, foldername, use_gpu, num_agents, init_w=True): self.algo_name = algo_name self.gamma = gamma self.tau = tau self.total_update = 0 self.agent_id = id self.use_gpu = use_gpu self.tracker = utils.Tracker( foldername, ['q_' + savetag, 'qloss_' + savetag, 'policy_loss_' + savetag], '.csv', save_iteration=1000, conv_size=1000) #Initialize actors self.policy = MultiHeadActor(state_dim, action_dim, hidden_size, num_agents) if init_w: self.policy.apply(utils.init_weights) self.policy_target = MultiHeadActor(state_dim, action_dim, hidden_size, num_agents) utils.hard_update(self.policy_target, self.policy) self.policy_optim = Adam(self.policy.parameters(), actor_lr) self.critic = QNetwork(state_dim, action_dim, hidden_size) if init_w: self.critic.apply(utils.init_weights) self.critic_target = QNetwork(state_dim, action_dim, hidden_size) utils.hard_update(self.critic_target, self.critic) self.critic_optim = Adam(self.critic.parameters(), critic_lr) self.loss = nn.MSELoss() if use_gpu: self.policy_target.cuda() self.critic_target.cuda() self.policy.cuda() self.critic.cuda() self.num_critic_updates = 0 #Statistics Tracker self.policy_loss = { 'min': None, 'max': None, 'mean': None, 'std': None } self.q_loss = {'min': None, 'max': None, 'mean': None, 'std': None} self.q = {'min': None, 'max': None, 'mean': None, 'std': None} def update_parameters(self, state_batch, next_state_batch, action_batch, reward_batch, done_batch, global_reward, agent_id, num_epoch=1, **kwargs): """Runs a step of Bellman upodate and policy gradient using a batch of experiences """ if isinstance(state_batch, list): state_batch = torch.cat(state_batch) next_state_batch = torch.cat(next_state_batch) action_batch = torch.cat(action_batch) reward_batch = torch.cat(reward_batch).done_batch = torch.cat( done_batch) global_reward = torch.cat(global_reward) for _ in range(num_epoch): ########### CRITIC UPDATE #################### #Compute next q-val, next_v and target with torch.no_grad(): #Policy Noise policy_noise = np.random.normal( 0, kwargs['policy_noise'], (action_batch.size()[0], action_batch.size()[1])) policy_noise = torch.clamp(torch.Tensor(policy_noise), -kwargs['policy_noise_clip'], kwargs['policy_noise_clip']) #Compute next action_bacth next_action_batch = self.policy_target.clean_action( next_state_batch, agent_id) + policy_noise.cuda( ) if self.use_gpu else policy_noise next_action_batch = torch.clamp(next_action_batch, -1, 1) #Compute Q-val and value of next state masking by done q1, q2 = self.critic_target.forward(next_state_batch, next_action_batch) q1 = (1 - done_batch) * q1 q2 = (1 - done_batch) * q2 #Select which q to use as next-q (depends on algo) if self.algo_name == 'TD3': next_q = torch.min(q1, q2) elif self.algo_name == 'DDPG': next_q = q1 #Compute target q and target val target_q = reward_batch + (self.gamma * next_q) self.critic_optim.zero_grad() current_q1, current_q2 = self.critic.forward((state_batch), (action_batch)) utils.compute_stats(current_q1, self.q) dt = self.loss(current_q1, target_q) if self.algo_name == 'TD3': dt = dt + self.loss(current_q2, target_q) utils.compute_stats(dt, self.q_loss) dt.backward() self.critic_optim.step() self.num_critic_updates += 1 #Delayed Actor Update if self.num_critic_updates % kwargs['policy_ups_freq'] == 0: actor_actions = self.policy.clean_action(state_batch, agent_id) Q1, Q2 = self.critic.forward(state_batch, actor_actions) # if self.args.use_advantage: policy_loss = -(Q1 - val) policy_loss = -Q1 utils.compute_stats(-policy_loss, self.policy_loss) policy_loss = policy_loss.mean() self.policy_optim.zero_grad() policy_loss.backward(retain_graph=True) self.policy_optim.step() if self.num_critic_updates % kwargs['policy_ups_freq'] == 0: utils.soft_update(self.policy_target, self.policy, self.tau) utils.soft_update(self.critic_target, self.critic, self.tau) self.total_update += 1 if self.agent_id == 0: self.tracker.update([ self.q['mean'], self.q_loss['mean'], self.policy_loss['mean'] ], self.total_update)