def create_mtcnn_net(p_model_path=None, r_model_path=None, o_model_path=None, use_cuda=True): pnet, rnet, onet = None, None, None if p_model_path is not None: pnet = PNet(use_cuda=use_cuda) if (use_cuda): print('p_model_path:{0}'.format(p_model_path)) pnet.load_state_dict(torch.load(p_model_path)) pnet.cuda() else: # forcing all GPU tensors to be in CPU while loading pnet.load_state_dict( torch.load(p_model_path, map_location=lambda storage, loc: storage)) pnet.eval() if r_model_path is not None: rnet = RNet(use_cuda=use_cuda) if (use_cuda): print('r_model_path:{0}'.format(r_model_path)) rnet.load_state_dict(torch.load(r_model_path)) rnet.cuda() else: rnet.load_state_dict( torch.load(r_model_path, map_location=lambda storage, loc: storage)) rnet.eval() if o_model_path is not None: onet = ONet(use_cuda=use_cuda) if (use_cuda): print('o_model_path:{0}'.format(o_model_path)) onet.load_state_dict(torch.load(o_model_path)) onet.cuda() else: onet.load_state_dict( torch.load(o_model_path, map_location=lambda storage, loc: storage)) onet.eval() return pnet, rnet, onet
def create_XNet(device, p_model_path, r_model_path, o_model_path): m_PNet, m_RNet, m_ONet = None, None, None if os.access(p_model_path, os.F_OK): # PNet m_PNet = PNet() m_PNet = m_PNet.to(device) chkpt = torch.load(p_model_path, map_location=device) m_PNet.load_state_dict(chkpt) m_PNet.eval() print('load PNet ~ : ', p_model_path) if os.access(r_model_path, os.F_OK): # RNet # m_RNet.load_state_dict(torch.load(r_model_path)) m_RNet = RNet() m_RNet = m_RNet.to(device) chkpt = torch.load(r_model_path, map_location=device) m_RNet.load_state_dict(chkpt) m_RNet.eval() print('load RNet ~ : ', r_model_path) if os.access(o_model_path, os.F_OK): # RNet # m_RNet.load_state_dict(torch.load(r_model_path)) m_ONet = ONet() m_ONet = m_ONet.to(device) chkpt = torch.load(o_model_path, map_location=device) m_ONet.load_state_dict(chkpt) m_ONet.eval() print('load ONet ~ : ', o_model_path) return m_PNet, m_RNet, m_ONet
def create_mtcnn_model(p_model_path=None, r_model_path=None, o_model_path=None): pnet, rnet, onet = None, None, None if p_model_path is not None: pnet = PNet() pnet.load_state_dict(torch.load(p_model_path)) pnet.to('cuda') pnet.eval() # pnet.load_state_dict(torch.load(p_model_path, map_location=lambda storage, loc: storage)) if r_model_path is not None: rnet = RNet() rnet.load_state_dict(torch.load(r_model_path)) rnet.to('cuda') rnet.eval() if o_model_path is not None: onet = ONet() onet.load_state_dict(torch.load(o_model_path)) onet.to('cuda') onet.eval() return pnet, rnet, onet
def trainer(ops): set_seed(ops.seed) use_cuda = torch.cuda.is_available() device = torch.device('cuda:0' if use_cuda else 'cpu') if ops.pattern == 'P-Net': m_XNet = PNet() mtcnn_detector = None elif ops.pattern == 'R-Net': m_XNet = RNet() elif ops.pattern == 'O-Net': m_XNet = ONet() # datasets dataset = LoadImagesAndLabels(pattern=ops.pattern, path_img=ops.path_img, path_anno=ops.path_anno, batch_size=ops.batch_size) print('dataset len : ', dataset.__len__()) dataloader = DataLoader(dataset, batch_size=1, num_workers=ops.num_workers, shuffle=True, pin_memory=False, drop_last=True) print('{} : \n'.format(ops.pattern), m_XNet) m_XNet = m_XNet.to(device) m_loss = LossFn() if ops.Optimizer_X == 'Adam': optimizer = torch.optim.Adam(m_XNet.parameters(), lr=ops.init_lr, betas=(0.9, 0.99), weight_decay=1e-6) elif ops.Optimizer_X == 'SGD': optimizer = torch.optim.SGD(m_XNet.parameters(), lr=ops.init_lr, momentum=0.9, weight_decay=1e-6) elif ops.Optimizer_X == 'RMSprop': optimizer = torch.optim.RMSprop(m_XNet.parameters(), lr=ops.init_lr, alpha=0.9, weight_decay=1e-6) else: print('------>>> Optimizer init error : ', ops.Optimizer_X) # load finetune model if os.access(ops.ft_model, os.F_OK): chkpt = torch.load(ops.ft_model, map_location=device) print('chkpt:\n', ops.ft_model) m_XNet.load_state_dict(chkpt) # train print(' epoch : ', ops.epochs) best_loss = np.inf loss_mean = 0. loss_cls_mean = 0. loss_idx = 0. init_lr = ops.init_lr loss_cnt = 0 loss_cnt = 0 for epoch in range(0, ops.epochs): if loss_idx != 0: if best_loss > (loss_mean / loss_idx): best_loss = loss_mean / loss_idx loss_cnt = 0 else: if loss_cnt > 3: init_lr = init_lr * 0.5 set_learning_rate(optimizer, init_lr) loss_cnt = 0 else: loss_cnt += 1 loss_mean = 0. loss_cls_mean = 0. loss_idx = 0. print('\nepoch %d ' % epoch) m_XNet = m_XNet.train() random.shuffle(dataset.annotations) # shuffle 图片组合 for i, (imgs, gt_labels, gt_offsets, pos_num, part_num, neg_num) in enumerate(dataloader): imgs = imgs.squeeze(0) gt_labels = gt_labels.squeeze(0) gt_offsets = gt_offsets.squeeze(0) # print('imgs size {}, labels size {}, offsets size {}'.format(imgs.size(),gt_labels.size(),gt_offsets.size())) if use_cuda: imgs = imgs.cuda() # (bs, 3, h, w) gt_labels = gt_labels.cuda() gt_offsets = gt_offsets.cuda() cls_pred, box_offset_pred = m_XNet(imgs) cls_loss = m_loss.focal_Loss(gt_labels, cls_pred) box_offset_loss = m_loss.box_loss(gt_labels, gt_offsets, box_offset_pred) if ops.pattern == 'O-Net': all_loss = cls_loss * 1.0 + box_offset_loss * 0.4 elif ops.pattern == 'R-Net': all_loss = cls_loss * 1.0 + box_offset_loss * 0.6 else: all_loss = cls_loss * 1.0 + box_offset_loss * 1.0 loss_mean += all_loss.item() loss_cls_mean += cls_loss.item() loss_idx += 1. optimizer.zero_grad() all_loss.backward() optimizer.step() if i % 5 == 0: loc_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) print("[%s]-<%s>Epoch: %d, [%d/%d],lr:%.6f,Loss:%.5f - Mean Loss:%.5f - Mean cls loss:%5f,cls_loss:%.5f ,bbox_loss:%.5f,imgs_batch: %4d,best_loss: %.5f" \ % (loc_time,ops.pattern,epoch, i,dataset.__len__(), optimizer.param_groups[0]['lr'], \ all_loss.item(),loss_mean/loss_idx,loss_cls_mean/loss_idx,cls_loss.item(),box_offset_loss.item(),imgs.size()[0],best_loss), ' ->pos:{},part:{},neg:{}'.format(pos_num.item(),part_num.item(),neg_num.item())) if i % 50 == 0 and i > 1: accuracy = compute_accuracy(cls_pred, gt_labels) print("\n ------------- >>> accuracy: %f\n" % (accuracy.item())) accuracy = compute_accuracy(cls_pred, gt_labels) torch.save(m_XNet.state_dict(), ops.ckpt + '{}_latest.pth'.format(ops.pattern)) if i % 80 == 0 and i > 1: torch.save( m_XNet.state_dict(), ops.ckpt + '{}_epoch-{}.pth'.format(ops.pattern, epoch))
def train_rnet(model_store_path, end_epoch, imdb, batch_size, frequent=50, base_lr=0.01, use_cuda=True): if not os.path.exists(model_store_path): os.makedirs(model_store_path) lossfn = LossFn() net = RNet(is_train=True, use_cuda=use_cuda) net.train() if use_cuda: net.cuda() optimizer = torch.optim.Adam(net.parameters(), lr=base_lr) train_data = TrainImageReader(imdb, 24, batch_size, shuffle=True) for cur_epoch in range(1, end_epoch + 1): train_data.reset() for batch_idx, (image, (gt_label, gt_bbox, gt_landmark)) in enumerate(train_data): im_tensor = [ image_tools.convert_image_to_tensor(image[i, :, :, :]) for i in range(image.shape[0]) ] im_tensor = torch.stack(im_tensor) im_tensor = Variable(im_tensor) gt_label = Variable(torch.from_numpy(gt_label).float()) gt_bbox = Variable(torch.from_numpy(gt_bbox).float()) gt_landmark = Variable(torch.from_numpy(gt_landmark).float()) if use_cuda: im_tensor = im_tensor.cuda() gt_label = gt_label.cuda() gt_bbox = gt_bbox.cuda() gt_landmark = gt_landmark.cuda() cls_pred, box_offset_pred = net(im_tensor) # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred) cls_loss = lossfn.cls_loss(gt_label, cls_pred) box_offset_loss = lossfn.box_loss(gt_label, gt_bbox, box_offset_pred) # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred) all_loss = cls_loss * 1.0 + box_offset_loss * 0.5 if batch_idx % frequent == 0: accuracy = compute_accuracy(cls_pred, gt_label) show1 = accuracy.data.cpu().numpy() show2 = cls_loss.data.cpu().numpy() show3 = box_offset_loss.data.cpu().numpy() # show4 = landmark_loss.data.cpu().numpy() show5 = all_loss.data.cpu().numpy() print( "%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s " % (datetime.datetime.now(), cur_epoch, batch_idx, show1, show2, show3, show5, base_lr)) optimizer.zero_grad() all_loss.backward() optimizer.step() torch.save( net.state_dict(), os.path.join(model_store_path, "rnet_epoch_%d.pt" % cur_epoch)) torch.save( net, os.path.join(model_store_path, "rnet_epoch_model_%d.pkl" % cur_epoch))
def train_rnet(self, train_data_path): device = torch.device('cuda') lossfn = LossFn() net = RNet() # 返回 一样的 net = net.to(device) net.to(device) # 切换到train 状态 net.eval() 测试状态 net.train() # print(net) optimizer = torch.optim.Adam(net.parameters(), lr=1e-3) self.viz.line(Y=torch.FloatTensor([0.]), X=torch.FloatTensor([0.]), win='rnet_train_loss', opts=dict(title='train loss')) # 加载数据 ratios ==> pos:part:neg:landmark trian_datasets = DataReader(train_data_path, im_size=24, transform=self.trainTransform, batch_size=4096, ratios=(1, 1, 3, 2)) for epoch in range(1): print("epoch:", epoch) for step, (imgs, cls_labels, rois, landmarks) in enumerate(trian_datasets): # [b, 3, 24, 24],[b],[4],[10] imgs = imgs.to(device) cls_labels = cls_labels.to(device) rois = rois.to(device) landmarks = landmarks.to(device) cls_pred, box_offset_pred, landmarks_pred = net(imgs) # 貌似这里打印最后一个的loss,对于整体来说不怎么准确 cls_loss = lossfn.cls_loss(cls_labels, cls_pred) box_offset_loss = lossfn.box_loss(cls_labels, rois, box_offset_pred) landmark_loss = lossfn.landmark_loss(cls_labels, landmarks, landmarks_pred) print("cls_loss:", cls_loss) print("box_offset_loss:", box_offset_loss) print("landmark_loss:", landmark_loss) all_loss = cls_loss * 1.0 + box_offset_loss * 0.5 + landmark_loss * 0.5 self.viz.line(Y=torch.FloatTensor([all_loss]), X=torch.FloatTensor([step]), win='rnet_train_loss', update='append') optimizer.zero_grad() all_loss.backward() optimizer.step() print("all_loss:", all_loss) print("-" * 40, "step:", step, "-" * 40) if step % 1000 == 0: accuracy = compute_accuracy(cls_pred, cls_labels, threshold=0.7) recoll = compute_recoll(cls_pred, cls_labels, threshold=0.7) print( "=" * 80, "\n\n=> acc:{}\n=> recoll:{}\n\n".format( accuracy, recoll), "=" * 80) if step % 1000 == 0: torch.save( net.state_dict(), os.path.join("../data/models/", "rnet_epoch_%d.pt" % epoch)) torch.save( net, os.path.join("../data/models/", "rnet_epoch_model_%d.pkl" % epoch)) epoch += 1