def __init__(self): K.set_learning_phase(0) args = Args(os.environ['GPU'], float(os.environ['GPU_MEMORY_FRACTION']), os.environ['DATA_SET'], int(os.environ['BATCH_SIZE'])) global graph graph = tf.get_default_graph() self.params = get_spectralnet_config(args) ktf.set_session(get_session(args.gpu_memory_fraction)) self.batch_size = args.batch_size self.batch_sizes = { 'Unlabeled': self.batch_size, 'Labeled': self.batch_size, 'Orthonorm': self.batch_size, } n_clusters = self.params['n_clusters'] y_labeled_onehot = np.empty((0, n_clusters)) # spectralnet has three inputs -- they are defined here input_shape = [n_clusters] inputs = { 'Unlabeled': Input(shape=input_shape, name='UnlabeledInput'), 'Labeled': Input(shape=input_shape, name='LabeledInput'), 'Orthonorm': Input(shape=input_shape, name='OrthonormInput'), } # Load Spectral net y_true = tf.placeholder(tf.float32, shape=(None, n_clusters), name='y_true') spectralnet_model_path = os.path.join(self.params['model_path'], 'spectral_net') self.spectral_net = networks.SpectralNet(inputs, self.params['arch'], self.params.get('spec_reg'), y_true, y_labeled_onehot, n_clusters, self.params['affinity'], self.params['scale_nbr'], self.params['n_nbrs'], self.batch_sizes, spectralnet_model_path, siamese_net=None, train=False, x_train=None) self.clustering_algo = joblib.load( os.path.join(self.params['model_path'], 'spectral_net', 'clustering_aglo.sav'))
def run_net(data, params): # # UNPACK DATA # x_train, y_train, x_val, y_val, x_test, y_test = data['spectral'][ 'train_and_test'] x_train_unlabeled, y_train_unlabeled, x_train_labeled, y_train_labeled = data[ 'spectral']['train_unlabeled_and_labeled'] x_val_unlabeled, y_val_unlabeled, x_val_labeled, y_val_labeled = data[ 'spectral']['val_unlabeled_and_labeled'] if 'siamese' in params['affinity']: pairs_train, dist_train, pairs_val, dist_val = data['siamese'][ 'train_and_test'] x = np.concatenate((x_train, x_val, x_test), axis=0) y = np.concatenate((y_train, y_val, y_test), axis=0) if len(x_train_labeled): y_train_labeled_onehot = OneHotEncoder().fit_transform( y_train_labeled.reshape(-1, 1)).toarray() else: y_train_labeled_onehot = np.empty((0, len(np.unique(y)))) # # SET UP INPUTS # # create true y placeholder (not used in unsupervised training) y_true = tf.placeholder(tf.float32, shape=(None, params['n_clusters']), name='y_true') batch_sizes = { 'Unlabeled': params['batch_size'], 'Labeled': params['batch_size'], 'Orthonorm': params.get('batch_size_orthonorm', params['batch_size']), } input_shape = x.shape[1:] # spectralnet has three inputs -- they are defined here inputs = { 'Unlabeled': Input(shape=input_shape, name='UnlabeledInput'), 'Labeled': Input(shape=input_shape, name='LabeledInput'), 'Orthonorm': Input(shape=input_shape, name='OrthonormInput'), } # # DEFINE AND TRAIN SIAMESE NET # # run only if we are using a siamese network if params['affinity'] == 'siamese': siamese_net = networks.SiameseNet(inputs, params['arch'], params.get('siam_reg'), y_true) history = siamese_net.train(pairs_train, dist_train, pairs_val, dist_val, params['siam_lr'], params['siam_drop'], params['siam_patience'], params['siam_ne'], params['siam_batch_size']) else: siamese_net = None # # DEFINE AND TRAIN SPECTRALNET # spectral_net = networks.SpectralNet(inputs, params['arch'], params.get('spec_reg'), y_true, y_train_labeled_onehot, params['n_clusters'], params['affinity'], params['scale_nbr'], params['n_nbrs'], batch_sizes, siamese_net, x_train, len(x_train_labeled)) spectral_net.train(x_train_unlabeled, x_train_labeled, x_val_unlabeled, params['spec_lr'], params['spec_drop'], params['spec_patience'], params['spec_ne']) print("finished training") # # EVALUATE # # get final embeddings x_spectralnet = spectral_net.predict(x) # get accuracy and nmi kmeans_assignments, km = get_cluster_sols(x_spectralnet, ClusterClass=KMeans, n_clusters=params['n_clusters'], init_args={'n_init': 10}) y_spectralnet, _ = get_y_preds(kmeans_assignments, y, params['n_clusters']) print_accuracy(kmeans_assignments, y, params['n_clusters']) from sklearn.metrics import normalized_mutual_info_score as nmi nmi_score = nmi(kmeans_assignments, y) print('NMI: ' + str(np.round(nmi_score, 3))) if params['generalization_metrics']: x_spectralnet_train = spectral_net.predict(x_train_unlabeled) x_spectralnet_test = spectral_net.predict(x_test) km_train = KMeans( n_clusters=params['n_clusters']).fit(x_spectralnet_train) from scipy.spatial.distance import cdist dist_mat = cdist(x_spectralnet_test, km_train.cluster_centers_) closest_cluster = np.argmin(dist_mat, axis=1) print_accuracy(closest_cluster, y_test, params['n_clusters'], ' generalization') nmi_score = nmi(closest_cluster, y_test) print('generalization NMI: ' + str(np.round(nmi_score, 3))) return x_spectralnet, y_spectralnet
def run_net(data, params, train=True): # Unpack data x_train, y_train, x_val, y_val, x_test, y_test = data['spectral']['train_and_test'] x_train_unlabeled, y_train_unlabeled, x_train_labeled, y_train_labeled = data['spectral'][ 'train_unlabeled_and_labeled'] x_val_unlabeled, y_val_unlabeled, x_val_labeled, y_val_labeled = data['spectral']['val_unlabeled_and_labeled'] x = concatenate([x_train, x_val, x_test]) y = concatenate([y_train, y_val, y_test]) if len(x_train_labeled): y_train_labeled_onehot = OneHotEncoder().fit_transform(y_train_labeled.reshape(-1, 1)).toarray() else: y_train_labeled_onehot = np.empty((0, len(np.unique(y)))) # Set up inputs # create true y placeholder (not used in unsupervised training) y_true = tf.placeholder(tf.float32, shape=(None, params['n_clusters']), name='y_true') batch_sizes = { 'Unlabeled': params['batch_size'], 'Labeled': params['batch_size'], 'Orthonorm': params.get('batch_size_orthonorm', params['batch_size']), } input_shape = x.shape[1:] # spectralnet has three inputs -- they are defined here inputs = { 'Unlabeled': Input(shape=input_shape, name='UnlabeledInput'), 'Labeled': Input(shape=input_shape, name='LabeledInput'), 'Orthonorm': Input(shape=input_shape, name='OrthonormInput'), } # run only if we are using a siamese network if params['affinity'] == 'siamese': siamese_model_path = params['siamese_model_path'] if not os.path.isfile(os.path.join(siamese_model_path, "model.h5")): raise Exception("siamese_model_path %s does not exist" % siamese_model_path) siamese_net = networks.SiameseNet(inputs, params['arch'], params.get('siam_reg'), y_true, siamese_model_path) else: siamese_net = None if train: K.set_learning_phase(1) # Define and train spectral net spectralnet_model_path = os.path.join(params['model_path'], 'spectral_net') spectral_net = networks.SpectralNet(inputs, params['arch'], params.get('spec_reg'), y_true, y_train_labeled_onehot, params['n_clusters'], params['affinity'], params['scale_nbr'], params['n_nbrs'], batch_sizes, spectralnet_model_path, siamese_net, True, x_train, len(x_train_labeled), ) if train: spectral_net.train( x_train_unlabeled, x_train_labeled, x_val_unlabeled, params['spec_lr'], params['spec_drop'], params['spec_patience'], params['spec_ne']) print("finished training") if not os.path.isdir(spectralnet_model_path): os.makedirs(spectralnet_model_path) spectral_net.save_model() print("finished saving model") # Evaluate model # get final embeddings x_spectralnet = spectral_net.predict(x) clustering_algo = ClusteringAlgorithm(ClusterClass=KMeans, n_clusters=params['n_clusters'], init_args={'n_init': 10}) clustering_algo.fit(x_spectralnet, y) # get accuracy and nmi joblib.dump(clustering_algo, os.path.join(params['model_path'], 'spectral_net', 'clustering_aglo.sav')) kmeans_assignments = clustering_algo.predict_cluster_assignments(x_spectralnet) y_spectralnet = clustering_algo.predict(x_spectralnet) print_accuracy(kmeans_assignments, y, params['n_clusters']) nmi_score = nmi(kmeans_assignments, y) print('NMI: ' + str(np.round(nmi_score, 3))) if params['generalization_metrics']: x_spectralnet_train = spectral_net.predict(x_train_unlabeled) x_spectralnet_test = spectral_net.predict(x_test) km_train = KMeans(n_clusters=params['n_clusters']).fit(x_spectralnet_train) from scipy.spatial.distance import cdist dist_mat = cdist(x_spectralnet_test, km_train.cluster_centers_) closest_cluster = np.argmin(dist_mat, axis=1) print_accuracy(closest_cluster, y_test, params['n_clusters'], ' generalization') nmi_score = nmi(closest_cluster, y_test) print('generalization NMI: ' + str(np.round(nmi_score, 3))) return x_spectralnet, y_spectralnet
def run_predict(params): K.set_learning_phase(0) input_shape = x.shape[1:] y_labeled_onehot = np.empty((0, params['n_clusters'])) # spectralnet has three inputs -- they are defined here inputs = { 'Unlabeled': Input(shape=input_shape, name='UnlabeledInput'), 'Labeled': Input(shape=input_shape, name='LabeledInput'), 'Orthonorm': Input(shape=input_shape, name='OrthonormInput'), } y_true = tf.placeholder(tf.float32, shape=(None, params['n_clusters']), name='y_true') # Load Siamese network if params['affinity'] == 'siamese': siamese_input_shape = [params['n_clusters']] siamese_inputs = { 'Unlabeled': Input(shape=siamese_input_shape, name='UnlabeledInput'), 'Labeled': Input(shape=siamese_input_shape, name='LabeledInput'), } siamese_net = networks.SiameseNet(siamese_inputs, params['arch'], params.get('siam_reg'), y_true, params['siamese_model_path']) else: siamese_net = None # Load Spectral net spectralnet_model_path = os.path.join(params['model_path'], 'spectral_net') spectral_net = networks.SpectralNet(inputs, params['arch'], params.get('spec_reg'), y_true, y_labeled_onehot, params['n_clusters'], params['affinity'], params['scale_nbr'], params['n_nbrs'], batch_sizes, spectralnet_model_path, siamese_net, train=False) # get final embeddings W_tensor = costs.knn_affinity(siamese_net.outputs['A'], params['n_nbrs'], scale=None, scale_nbr=params['scale_nbr']) x_spectralnet = spectral_net.predict_unlabelled(x) W = spectral_net.run_tensor(x, W_tensor) print('x_spectralnet', x_spectralnet.shape) clustering_algo = joblib.load( os.path.join(params['model_path'], 'spectral_net', 'clustering_aglo.sav')) kmeans_assignments = clustering_algo.predict_cluster_assignments( x_spectralnet) y_spectralnet = clustering_algo.predict(x_spectralnet) print_accuracy(kmeans_assignments, y, params['n_clusters']) # x_dec = decode_data(x, params, params['dset']) return x_spectralnet, y_spectralnet, x_spectralnet, W
def run_net(data, params): # # UNPACK DATA # x_train, y_train, x_val, y_val, x_test, y_test = data['spectral'][ 'train_and_test'] x_train_unlabeled, y_train_unlabeled, x_train_labeled, y_train_labeled = data[ 'spectral']['train_unlabeled_and_labeled'] x_val_unlabeled, y_val_unlabeled, x_val_labeled, y_val_labeled = data[ 'spectral']['val_unlabeled_and_labeled'] if 'siamese' in params['affinity']: pairs_train, dist_train, pairs_val, dist_val = data['siamese'][ 'train_and_test'] x = np.concatenate((x_train, x_val, x_test), axis=0) y = np.concatenate((y_train, y_val, y_test), axis=0) X = x n_samples, n_features = X.shape def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure(figsize=(12, 12)) ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], '.', color=plt.cm.Set1(1), fontdict={ 'weight': 'bold', 'size': 20 }) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) from sklearn import manifold tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) start_time = time.time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne) plt.show() if len(x_train_labeled): y_train_labeled_onehot = OneHotEncoder().fit_transform( y_train_labeled.reshape(-1, 1)).toarray() else: y_train_labeled_onehot = np.empty((0, len(np.unique(y)))) # # SET UP INPUTS # # create true y placeholder (not used in unsupervised training) y_true = tf.placeholder(tf.float32, shape=(None, params['n_clusters']), name='y_true') batch_sizes = { 'Unlabeled': params['batch_size'], 'Labeled': params['batch_size'], 'Orthonorm': params.get('batch_size_orthonorm', params['batch_size']), } input_shape = x.shape[1:] # spectralnet has three inputs -- they are defined here inputs = { 'Unlabeled': Input(shape=input_shape, name='UnlabeledInput'), 'Labeled': Input(shape=input_shape, name='LabeledInput'), 'Orthonorm': Input(shape=input_shape, name='OrthonormInput'), } # # DEFINE AND TRAIN SIAMESE NET # # run only if we are using a siamese network if params['affinity'] == 'siamese': siamese_net = networks.SiameseNet(inputs, params['arch'], params.get('siam_reg'), y_true) history = siamese_net.train(pairs_train, dist_train, pairs_val, dist_val, params['siam_lr'], params['siam_drop'], params['siam_patience'], params['siam_ne'], params['siam_batch_size']) else: siamese_net = None spectral_net = networks.SpectralNet(inputs, params['arch'], params.get('spec_reg'), y_true, y_train_labeled_onehot, params['n_clusters'], params['affinity'], params['scale_nbr'], params['n_nbrs'], batch_sizes, siamese_net, x_train, len(x_train_labeled)) spectral_net.train(x_train_unlabeled, x_train_labeled, x_val_unlabeled, params['spec_lr'], params['spec_drop'], params['spec_patience'], params['spec_ne']) print("finished training") # # EVALUATE # # get final embeddings x_spectralnet = spectral_net.predict(x) # get accuracy and nmi kmeans_assignments, km = get_cluster_sols(x_spectralnet, ClusterClass=KMeans, n_clusters=params['n_clusters'], init_args={'n_init': 10}) y_spectralnet, _, _1 = get_y_preds(kmeans_assignments, y, params['n_clusters']) print_accuracy(kmeans_assignments, y, params['n_clusters']) from sklearn.metrics import normalized_mutual_info_score as nmi nmi_score = nmi(kmeans_assignments, y) print('NMI: ' + str(np.round(nmi_score, 3))) if params['generalization_metrics']: x_spectralnet_train = spectral_net.predict(x_train_unlabeled) x_spectralnet_test = spectral_net.predict(x_test) km_train = KMeans( n_clusters=params['n_clusters']).fit(x_spectralnet_train) from scipy.spatial.distance import cdist dist_mat = cdist(x_spectralnet_test, km_train.cluster_centers_) closest_cluster = np.argmin(dist_mat, axis=1) print_accuracy(closest_cluster, y_test, params['n_clusters'], ' generalization') nmi_score = nmi(closest_cluster, y_test) print('generalization NMI: ' + str(np.round(nmi_score, 3))) return x_spectralnet, y_spectralnet