def __init__(self, vocab_size, word_dim, n_sentiment_tag, tag_dim, lstm_dim, mlp_dim, n_class, we): super(BiLSTMWordTag, self).__init__() self.vocab_size = vocab_size self.word_dim = word_dim self.n_sentiment_tag = n_sentiment_tag self.tag_dim = tag_dim self.lstm_dim = lstm_dim assert self.lstm_dim == self.word_dim + self.tag_dim, "lstm_dim != word_dim + tag_dim" self.mlp_dim = mlp_dim self.n_class = n_class self.drop = nn.Dropout(p=0.5) self.word_embedding = TokenEmbedding(self.vocab_size, self.word_dim, pretrained_emb=we) self.tag_embedding = nn.Embedding(self.n_sentiment_tag + 1, self.tag_dim, padding_idx=0) self.bilstm = BiLstmEncoder(self.lstm_dim, self.lstm_dim) self.interaction_layer = SelfAttention(2 * self.lstm_dim, self.lstm_dim) self.mlp_layer = nn.Linear(2 * self.lstm_dim, self.mlp_dim) self.classify_layer = nn.Linear(self.mlp_dim, self.n_class)
def __init__(self, n_sentiment_tag=5, tag_dim=50, lstm_dim=50, mlp_dim=100, n_class=2): super(BilstmClassifier, self).__init__() self.n_sentiment_tag = n_sentiment_tag self.tag_dim = tag_dim self.lstm_tag_dim = lstm_dim self.mlp_dim = mlp_dim self.n_class = n_class self.drop = nn.Dropout(p=0.5) self.tag_embedding = TokenEmbedding(1 + self.n_sentiment_tag, self.tag_dim) self.tag_bilstm = BiLstmEncoder(self.tag_dim, self.lstm_tag_dim) self.interaction_layer = SelfAttention(2 * self.lstm_tag_dim, self.lstm_tag_dim) self.mlp_layer = nn.Linear(2 * self.lstm_tag_dim, self.mlp_dim) self.classify_layer = nn.Linear(self.mlp_dim, self.n_class)
def __init__(self, vocab_size, word_dim, lstm_dim, mlp_dim, n_class, we=None): super(BiLSTMAttention, self).__init__() self.vocab_size = vocab_size self.word_dim = word_dim self.lstm_dim = lstm_dim self.mlp_dim = mlp_dim self.n_class = n_class self.drop = nn.Dropout(p=0.5) self.word_embedding = TokenEmbedding(self.vocab_size, self.word_dim, pretrained_emb=we) self.bilstm = BiLstmEncoder(self.word_dim, self.lstm_dim) self.interaction_layer = SelfAttention(2 * self.lstm_dim, self.lstm_dim) self.mlp_layer = nn.Linear(2 * self.lstm_dim, self.mlp_dim) self.classify_layer = nn.Linear(self.mlp_dim, self.n_class)
def __init__(self, vocab_size, word_dim, lstm_dim, n_sentiment_tag, mlp_dim, n_class, we, interaction_type): super(BilstmClassifier, self).__init__() self.vocab_size = vocab_size self.word_dim = word_dim self.lstm_dim = lstm_dim self.n_sentiment_tag = n_sentiment_tag self.mlp_dim = mlp_dim self.n_class = n_class self.word_embedding = TokenEmbedding(self.vocab_size, self.word_dim, pretrained_emb=we) self.bilstm = BiLstmEncoder(self.word_dim, self.lstm_dim) if interaction_type == "max": self.interaction_layer = MaxPooling() elif interaction_type == "avg": self.interaction_layer = AveragePooling() else: self.interaction_layer = SelfAttention(2 * self.lstm_dim, self.lstm_dim) self.mlp_layer = nn.Linear(2 * self.lstm_dim, self.mlp_dim) self.classify_layer = nn.Linear(self.mlp_dim, self.n_class) self.word2sentiment_tag = nn.Linear(2 * self.lstm_dim, self.n_sentiment_tag)
def __init__(self, vocab_size, word_dim, lstm_dim, mlp_dim, n_class, we=None): super(BiLSTMLast, self).__init__() self.vocab_size = vocab_size self.word_dim = word_dim self.lstm_dim = lstm_dim self.mlp_dim = mlp_dim self.n_class = n_class self.word_embedding = TokenEmbedding(self.vocab_size, self.word_dim, pretrained_emb=we) self.bilstm = nn.LSTM(self.word_dim, self.lstm_dim, batch_first=True, bidirectional=True) self.mlp_layer = nn.Linear(2 * self.lstm_dim, self.mlp_dim) self.classify_layer = nn.Linear(self.mlp_dim, self.n_class)
def __init__(self, vocab_size, word_dim, lstm_dim, mlp_dim, n_class, we=None): super(BiLSTMAverage, self).__init__() self.vocab_size = vocab_size self.word_dim = word_dim self.lstm_dim = lstm_dim self.mlp_dim = mlp_dim self.n_class = n_class self.word_embedding = TokenEmbedding(self.vocab_size, self.word_dim, pretrained_emb=we) self.bilstm = BiLstmEncoder(self.word_dim, self.lstm_dim) self.average_pooling_layer = AveragePooling() self.mlp_layer = nn.Linear(2 * self.lstm_dim, self.mlp_dim) self.classify_layer = nn.Linear(self.mlp_dim, self.n_class)