示例#1
0
    def re_organize_middle_weights(self, expand_ratio_stage=0):
        # conv3 -> conv2
        importance = torch.sum(torch.abs(self.conv3.conv.conv.weight.data), dim=(0, 2, 3))
        if isinstance(self.conv2.bn, DynamicGroupNorm):
            channel_per_group = self.conv2.bn.channel_per_group
            importance_chunks = torch.split(importance, channel_per_group)
            for chunk in importance_chunks:
                chunk.data.fill_(torch.mean(chunk))
            importance = torch.cat(importance_chunks, dim=0)
        if expand_ratio_stage > 0:
            sorted_expand_list = copy.deepcopy(self.expand_ratio_list)
            sorted_expand_list.sort(reverse=True)
            target_width_list = [
                make_divisible(round(max(self.out_channel_list) * expand), MyNetwork.CHANNEL_DIVISIBLE)
                for expand in sorted_expand_list
            ]
            right = len(importance)
            base = - len(target_width_list) * 1e5
            for i in range(expand_ratio_stage + 1):
                left = target_width_list[i]
                importance[left:right] += base
                base += 1e5
                right = left

        sorted_importance, sorted_idx = torch.sort(importance, dim=0, descending=True)
        self.conv3.conv.conv.weight.data = torch.index_select(self.conv3.conv.conv.weight.data, 1, sorted_idx)
        adjust_bn_according_to_idx(self.conv2.bn.bn, sorted_idx)
        self.conv2.conv.conv.weight.data = torch.index_select(self.conv2.conv.conv.weight.data, 0, sorted_idx)

        # conv2 -> conv1
        importance = torch.sum(torch.abs(self.conv2.conv.conv.weight.data), dim=(0, 2, 3))
        if isinstance(self.conv1.bn, DynamicGroupNorm):
            channel_per_group = self.conv1.bn.channel_per_group
            importance_chunks = torch.split(importance, channel_per_group)
            for chunk in importance_chunks:
                chunk.data.fill_(torch.mean(chunk))
            importance = torch.cat(importance_chunks, dim=0)
        if expand_ratio_stage > 0:
            sorted_expand_list = copy.deepcopy(self.expand_ratio_list)
            sorted_expand_list.sort(reverse=True)
            target_width_list = [
                make_divisible(round(max(self.out_channel_list) * expand), MyNetwork.CHANNEL_DIVISIBLE)
                for expand in sorted_expand_list
            ]
            right = len(importance)
            base = - len(target_width_list) * 1e5
            for i in range(expand_ratio_stage + 1):
                left = target_width_list[i]
                importance[left:right] += base
                base += 1e5
                right = left
        sorted_importance, sorted_idx = torch.sort(importance, dim=0, descending=True)

        self.conv2.conv.conv.weight.data = torch.index_select(self.conv2.conv.conv.weight.data, 1, sorted_idx)
        adjust_bn_according_to_idx(self.conv1.bn.bn, sorted_idx)
        self.conv1.conv.conv.weight.data = torch.index_select(self.conv1.conv.conv.weight.data, 0, sorted_idx)

        return None
示例#2
0
	def __init__(self, n_classes=1000, width_mult=1.0, bn_param=(0.1, 1e-5), dropout_rate=0.2,
	             ks=None, expand_ratio=None, depth_param=None, stage_width_list=None):
		input_channel = 16
		last_channel = 1280

		input_channel = make_divisible(input_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
		last_channel = make_divisible(last_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE) \
			if width_mult > 1.0 else last_channel

		cfg = {
			#    k,     exp,    c,      se,         nl,         s,      e,
			'0': [
				[3, 16, 16, False, 'relu', 1, 1],
			],
			'1': [
				[3, 64, 24, False, 'relu', 2, None],  # 4
				[3, 72, 24, False, 'relu', 1, None],  # 3
			],
			'2': [
				[5, 72, 40, True, 'relu', 2, None],  # 3
				[5, 120, 40, True, 'relu', 1, None],  # 3
				[5, 120, 40, True, 'relu', 1, None],  # 3
			],
			'3': [
				[3, 240, 80, False, 'h_swish', 2, None],  # 6
				[3, 200, 80, False, 'h_swish', 1, None],  # 2.5
				[3, 184, 80, False, 'h_swish', 1, None],  # 2.3
				[3, 184, 80, False, 'h_swish', 1, None],  # 2.3
			],
			'4': [
				[3, 480, 112, True, 'h_swish', 1, None],  # 6
				[3, 672, 112, True, 'h_swish', 1, None],  # 6
			],
			'5': [
				[5, 672, 160, True, 'h_swish', 2, None],  # 6
				[5, 960, 160, True, 'h_swish', 1, None],  # 6
				[5, 960, 160, True, 'h_swish', 1, None],  # 6
			]
		}

		cfg = self.adjust_cfg(cfg, ks, expand_ratio, depth_param, stage_width_list)
		# width multiplier on mobile setting, change `exp: 1` and `c: 2`
		for stage_id, block_config_list in cfg.items():
			for block_config in block_config_list:
				if block_config[1] is not None:
					block_config[1] = make_divisible(block_config[1] * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
				block_config[2] = make_divisible(block_config[2] * width_mult, MyNetwork.CHANNEL_DIVISIBLE)

		first_conv, blocks, final_expand_layer, feature_mix_layer, classifier = self.build_net_via_cfg(
			cfg, input_channel, last_channel, n_classes, dropout_rate
		)
		super(MobileNetV3Large, self).__init__(first_conv, blocks, final_expand_layer, feature_mix_layer, classifier)
		# set bn param
		self.set_bn_param(*bn_param)
示例#3
0
    def re_organize_middle_weights(self, expand_ratio_stage=0):
        importance = torch.sum(torch.abs(self.point_linear.conv.conv.weight.data), dim=(0, 2, 3))
        if isinstance(self.depth_conv.bn, DynamicGroupNorm):
            channel_per_group = self.depth_conv.bn.channel_per_group
            importance_chunks = torch.split(importance, channel_per_group)
            for chunk in importance_chunks:
                chunk.data.fill_(torch.mean(chunk))
            importance = torch.cat(importance_chunks, dim=0)
        if expand_ratio_stage > 0:
            sorted_expand_list = copy.deepcopy(self.expand_ratio_list)
            sorted_expand_list.sort(reverse=True)
            target_width_list = [
                make_divisible(round(max(self.in_channel_list) * expand), MyNetwork.CHANNEL_DIVISIBLE)
                for expand in sorted_expand_list
            ]

            right = len(importance)
            base = - len(target_width_list) * 1e5
            for i in range(expand_ratio_stage + 1):
                left = target_width_list[i]
                importance[left:right] += base
                base += 1e5
                right = left

        sorted_importance, sorted_idx = torch.sort(importance, dim=0, descending=True)
        self.point_linear.conv.conv.weight.data = torch.index_select(
            self.point_linear.conv.conv.weight.data, 1, sorted_idx
        )

        adjust_bn_according_to_idx(self.depth_conv.bn.bn, sorted_idx)
        self.depth_conv.conv.conv.weight.data = torch.index_select(
            self.depth_conv.conv.conv.weight.data, 0, sorted_idx
        )

        if self.use_se:
            # se expand: output dim 0 reorganize
            se_expand = self.depth_conv.se.fc.expand
            se_expand.weight.data = torch.index_select(se_expand.weight.data, 0, sorted_idx)
            se_expand.bias.data = torch.index_select(se_expand.bias.data, 0, sorted_idx)
            # se reduce: input dim 1 reorganize
            se_reduce = self.depth_conv.se.fc.reduce
            se_reduce.weight.data = torch.index_select(se_reduce.weight.data, 1, sorted_idx)
            # middle weight reorganize
            se_importance = torch.sum(torch.abs(se_expand.weight.data), dim=(0, 2, 3))
            se_importance, se_idx = torch.sort(se_importance, dim=0, descending=True)

            se_expand.weight.data = torch.index_select(se_expand.weight.data, 1, se_idx)
            se_reduce.weight.data = torch.index_select(se_reduce.weight.data, 0, se_idx)
            se_reduce.bias.data = torch.index_select(se_reduce.bias.data, 0, se_idx)

        if self.inverted_bottleneck is not None:
            adjust_bn_according_to_idx(self.inverted_bottleneck.bn.bn, sorted_idx)
            self.inverted_bottleneck.conv.conv.weight.data = torch.index_select(
                self.inverted_bottleneck.conv.conv.weight.data, 0, sorted_idx
            )
            return None
        else:
            return sorted_idx
示例#4
0
    def __init__(self, in_channel_list, out_channel_list, expand_ratio_list=0.25,
                 kernel_size=3, stride=1, act_func='relu', downsample_mode='avgpool_conv'):
        super(DynamicResNetBottleneckBlock, self).__init__()

        self.in_channel_list = in_channel_list
        self.out_channel_list = out_channel_list
        self.expand_ratio_list = val2list(expand_ratio_list)

        self.kernel_size = kernel_size
        self.stride = stride
        self.act_func = act_func
        self.downsample_mode = downsample_mode

        # build modules
        max_middle_channel = make_divisible(
            round(max(self.out_channel_list) * max(self.expand_ratio_list)), MyNetwork.CHANNEL_DIVISIBLE)

        self.conv1 = nn.Sequential(OrderedDict([
            ('conv', DynamicConv2d(max(self.in_channel_list), max_middle_channel)),
            ('bn', DynamicBatchNorm2d(max_middle_channel)),
            ('act', build_activation(self.act_func, inplace=True)),
        ]))

        self.conv2 = nn.Sequential(OrderedDict([
            ('conv', DynamicConv2d(max_middle_channel, max_middle_channel, kernel_size, stride)),
            ('bn', DynamicBatchNorm2d(max_middle_channel)),
            ('act', build_activation(self.act_func, inplace=True))
        ]))

        self.conv3 = nn.Sequential(OrderedDict([
            ('conv', DynamicConv2d(max_middle_channel, max(self.out_channel_list))),
            ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
        ]))

        if self.stride == 1 and self.in_channel_list == self.out_channel_list:
            self.downsample = IdentityLayer(max(self.in_channel_list), max(self.out_channel_list))
        elif self.downsample_mode == 'conv':
            self.downsample = nn.Sequential(OrderedDict([
                ('conv', DynamicConv2d(max(self.in_channel_list), max(self.out_channel_list), stride=stride)),
                ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
            ]))
        elif self.downsample_mode == 'avgpool_conv':
            self.downsample = nn.Sequential(OrderedDict([
                ('avg_pool', nn.AvgPool2d(kernel_size=stride, stride=stride, padding=0, ceil_mode=True)),
                ('conv', DynamicConv2d(max(self.in_channel_list), max(self.out_channel_list))),
                ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
            ]))
        else:
            raise NotImplementedError

        self.final_act = build_activation(self.act_func, inplace=True)

        self.active_expand_ratio = max(self.expand_ratio_list)
        self.active_out_channel = max(self.out_channel_list)
示例#5
0
    def forward(self, x):
        in_channel = x.size(1)

        if self.inverted_bottleneck is not None:
            self.inverted_bottleneck.conv.active_out_channel = \
                make_divisible(round(in_channel * self.active_expand_ratio), MyNetwork.CHANNEL_DIVISIBLE)

        self.depth_conv.conv.active_kernel_size = self.active_kernel_size
        self.point_linear.conv.active_out_channel = self.active_out_channel

        if self.inverted_bottleneck is not None:
            x = self.inverted_bottleneck(x)
        x = self.depth_conv(x)
        x = self.point_linear(x)
        return x
示例#6
0
    def get_active_subnet(self, in_channel, preserve_weight=True):
        # build the new layer
        sub_layer = set_layer_from_config(self.get_active_subnet_config(in_channel))
        sub_layer = sub_layer.to(get_net_device(self))
        if not preserve_weight:
            return sub_layer

        middle_channel = self.active_middle_channel(in_channel)
        # copy weight from current layer
        if sub_layer.inverted_bottleneck is not None:
            sub_layer.inverted_bottleneck.conv.weight.data.copy_(
                self.inverted_bottleneck.conv.get_active_filter(middle_channel, in_channel).data,
            )
            copy_bn(sub_layer.inverted_bottleneck.bn, self.inverted_bottleneck.bn.bn)

        sub_layer.depth_conv.conv.weight.data.copy_(
            self.depth_conv.conv.get_active_filter(middle_channel, self.active_kernel_size).data
        )
        copy_bn(sub_layer.depth_conv.bn, self.depth_conv.bn.bn)

        if self.use_se:
            se_mid = make_divisible(middle_channel // SEModule.REDUCTION, divisor=MyNetwork.CHANNEL_DIVISIBLE)
            sub_layer.depth_conv.se.fc.reduce.weight.data.copy_(
                self.depth_conv.se.get_active_reduce_weight(se_mid, middle_channel).data
            )
            sub_layer.depth_conv.se.fc.reduce.bias.data.copy_(
                self.depth_conv.se.get_active_reduce_bias(se_mid).data
            )

            sub_layer.depth_conv.se.fc.expand.weight.data.copy_(
                self.depth_conv.se.get_active_expand_weight(se_mid, middle_channel).data
            )
            sub_layer.depth_conv.se.fc.expand.bias.data.copy_(
                self.depth_conv.se.get_active_expand_bias(middle_channel).data
            )

        sub_layer.point_linear.conv.weight.data.copy_(
            self.point_linear.conv.get_active_filter(self.active_out_channel, middle_channel).data
        )
        copy_bn(sub_layer.point_linear.bn, self.point_linear.bn.bn)

        return sub_layer
示例#7
0
    def __init__(self, in_channel_list, out_channel_list,
                 kernel_size_list=3, expand_ratio_list=6, stride=1, act_func='relu6', use_se=False):
        super(DynamicMBConvLayer, self).__init__()

        self.in_channel_list = in_channel_list
        self.out_channel_list = out_channel_list

        self.kernel_size_list = val2list(kernel_size_list)
        self.expand_ratio_list = val2list(expand_ratio_list)

        self.stride = stride
        self.act_func = act_func
        self.use_se = use_se

        # build modules
        max_middle_channel = make_divisible(
            round(max(self.in_channel_list) * max(self.expand_ratio_list)), MyNetwork.CHANNEL_DIVISIBLE)
        if max(self.expand_ratio_list) == 1:
            self.inverted_bottleneck = None
        else:
            self.inverted_bottleneck = nn.Sequential(OrderedDict([
                ('conv', DynamicConv2d(max(self.in_channel_list), max_middle_channel)),
                ('bn', DynamicBatchNorm2d(max_middle_channel)),
                ('act', build_activation(self.act_func)),
            ]))

        self.depth_conv = nn.Sequential(OrderedDict([
            ('conv', DynamicSeparableConv2d(max_middle_channel, self.kernel_size_list, self.stride)),
            ('bn', DynamicBatchNorm2d(max_middle_channel)),
            ('act', build_activation(self.act_func))
        ]))
        if self.use_se:
            self.depth_conv.add_module('se', DynamicSE(max_middle_channel))

        self.point_linear = nn.Sequential(OrderedDict([
            ('conv', DynamicConv2d(max_middle_channel, max(self.out_channel_list))),
            ('bn', DynamicBatchNorm2d(max(self.out_channel_list))),
        ]))

        self.active_kernel_size = max(self.kernel_size_list)
        self.active_expand_ratio = max(self.expand_ratio_list)
        self.active_out_channel = max(self.out_channel_list)
示例#8
0
    def forward(self, x, groups=None):
        in_channel = x.size(1)
        num_mid = make_divisible(in_channel // self.reduction,
                                 divisor=MyNetwork.CHANNEL_DIVISIBLE)

        y = x.mean(3, keepdim=True).mean(2, keepdim=True)
        # reduce
        reduce_filter = self.get_active_reduce_weight(
            num_mid, in_channel, groups=groups).contiguous()
        reduce_bias = self.get_active_reduce_bias(num_mid)
        y = F.conv2d(y, reduce_filter, reduce_bias, 1, 0, 1, 1)
        # relu
        y = self.fc.relu(y)
        # expand
        expand_filter = self.get_active_expand_weight(
            num_mid, in_channel, groups=groups).contiguous()
        expand_bias = self.get_active_expand_bias(in_channel, groups=groups)
        y = F.conv2d(y, expand_filter, expand_bias, 1, 0, 1, 1)
        # hard sigmoid
        y = self.fc.h_sigmoid(y)

        return x * y
示例#9
0
	def __init__(self, n_classes=1000, bn_param=(0.1, 1e-5), dropout_rate=0.1, base_stage_width=None, width_mult=1.0,
	             ks_list=3, expand_ratio_list=6, depth_list=4):

		self.width_mult = width_mult
		self.ks_list = val2list(ks_list, 1)
		self.expand_ratio_list = val2list(expand_ratio_list, 1)
		self.depth_list = val2list(depth_list, 1)

		self.ks_list.sort()
		self.expand_ratio_list.sort()
		self.depth_list.sort()

		base_stage_width = [16, 16, 24, 40, 80, 112, 160, 960, 1280]

		final_expand_width = make_divisible(base_stage_width[-2] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE)
		last_channel = make_divisible(base_stage_width[-1] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE)

		stride_stages = [1, 2, 2, 2, 1, 2]
		act_stages = ['relu', 'relu', 'relu', 'h_swish', 'h_swish', 'h_swish']
		se_stages = [False, False, True, False, True, True]
		n_block_list = [1] + [max(self.depth_list)] * 5
		width_list = []
		for base_width in base_stage_width[:-2]:
			width = make_divisible(base_width * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE)
			width_list.append(width)

		input_channel, first_block_dim = width_list[0], width_list[1]
		# first conv layer
		first_conv = ConvLayer(3, input_channel, kernel_size=3, stride=2, act_func='h_swish')
		first_block_conv = MBConvLayer(
			in_channels=input_channel, out_channels=first_block_dim, kernel_size=3, stride=stride_stages[0],
			expand_ratio=1, act_func=act_stages[0], use_se=se_stages[0],
		)
		first_block = ResidualBlock(
			first_block_conv,
			IdentityLayer(first_block_dim, first_block_dim) if input_channel == first_block_dim else None,
		)

		# inverted residual blocks
		self.block_group_info = []
		blocks = [first_block]
		_block_index = 1
		feature_dim = first_block_dim

		for width, n_block, s, act_func, use_se in zip(width_list[2:], n_block_list[1:],
		                                               stride_stages[1:], act_stages[1:], se_stages[1:]):
			self.block_group_info.append([_block_index + i for i in range(n_block)])
			_block_index += n_block

			output_channel = width
			for i in range(n_block):
				if i == 0:
					stride = s
				else:
					stride = 1
				mobile_inverted_conv = DynamicMBConvLayer(
					in_channel_list=val2list(feature_dim), out_channel_list=val2list(output_channel),
					kernel_size_list=ks_list, expand_ratio_list=expand_ratio_list,
					stride=stride, act_func=act_func, use_se=use_se,
				)
				if stride == 1 and feature_dim == output_channel:
					shortcut = IdentityLayer(feature_dim, feature_dim)
				else:
					shortcut = None
				blocks.append(ResidualBlock(mobile_inverted_conv, shortcut))
				feature_dim = output_channel
		# final expand layer, feature mix layer & classifier
		final_expand_layer = ConvLayer(feature_dim, final_expand_width, kernel_size=1, act_func='h_swish')
		feature_mix_layer = ConvLayer(
			final_expand_width, last_channel, kernel_size=1, bias=False, use_bn=False, act_func='h_swish',
		)

		classifier = LinearLayer(last_channel, n_classes, dropout_rate=dropout_rate)

		super(OFAMobileNetV3, self).__init__(first_conv, blocks, final_expand_layer, feature_mix_layer, classifier)

		# set bn param
		self.set_bn_param(momentum=bn_param[0], eps=bn_param[1])

		# runtime_depth
		self.runtime_depth = [len(block_idx) for block_idx in self.block_group_info]
示例#10
0
    def __init__(self,
                 n_classes=1000,
                 width_mult=1.0,
                 bn_param=(0.1, 1e-5),
                 dropout_rate=0,
                 expand_ratio=None,
                 depth_param=None):

        expand_ratio = 0.25 if expand_ratio is None else expand_ratio

        input_channel = make_divisible(64 * width_mult,
                                       MyNetwork.CHANNEL_DIVISIBLE)
        mid_input_channel = make_divisible(input_channel // 2,
                                           MyNetwork.CHANNEL_DIVISIBLE)
        stage_width_list = ResNets.STAGE_WIDTH_LIST.copy()
        for i, width in enumerate(stage_width_list):
            stage_width_list[i] = make_divisible(width * width_mult,
                                                 MyNetwork.CHANNEL_DIVISIBLE)

        depth_list = [3, 4, 6, 3]
        if depth_param is not None:
            for i, depth in enumerate(ResNets.BASE_DEPTH_LIST):
                depth_list[i] = depth + depth_param

        stride_list = [1, 2, 2, 2]

        # build input stem
        input_stem = [
            ConvLayer(3,
                      mid_input_channel,
                      3,
                      stride=2,
                      use_bn=True,
                      act_func='relu'),
            ResidualBlock(
                ConvLayer(mid_input_channel,
                          mid_input_channel,
                          3,
                          stride=1,
                          use_bn=True,
                          act_func='relu'),
                IdentityLayer(mid_input_channel, mid_input_channel)),
            ConvLayer(mid_input_channel,
                      input_channel,
                      3,
                      stride=1,
                      use_bn=True,
                      act_func='relu')
        ]

        # blocks
        blocks = []
        for d, width, s in zip(depth_list, stage_width_list, stride_list):
            for i in range(d):
                stride = s if i == 0 else 1
                bottleneck_block = ResNetBottleneckBlock(
                    input_channel,
                    width,
                    kernel_size=3,
                    stride=stride,
                    expand_ratio=expand_ratio,
                    act_func='relu',
                    downsample_mode='avgpool_conv',
                )
                blocks.append(bottleneck_block)
                input_channel = width
        # classifier
        classifier = LinearLayer(input_channel,
                                 n_classes,
                                 dropout_rate=dropout_rate)

        super(ResNet50D, self).__init__(input_stem, blocks, classifier)

        # set bn param
        self.set_bn_param(*bn_param)
示例#11
0
    def __init__(self,
                 n_classes=1000,
                 bn_param=(0.1, 1e-5),
                 dropout_rate=0,
                 depth_list=2,
                 expand_ratio_list=0.25,
                 width_mult_list=1.0):

        self.depth_list = val2list(depth_list)
        self.expand_ratio_list = val2list(expand_ratio_list)
        self.width_mult_list = val2list(width_mult_list)
        # sort
        self.depth_list.sort()
        self.expand_ratio_list.sort()
        self.width_mult_list.sort()

        input_channel = [
            make_divisible(64 * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
            for width_mult in self.width_mult_list
        ]
        mid_input_channel = [
            make_divisible(channel // 2, MyNetwork.CHANNEL_DIVISIBLE)
            for channel in input_channel
        ]

        stage_width_list = ResNets.STAGE_WIDTH_LIST.copy()
        for i, width in enumerate(stage_width_list):
            stage_width_list[i] = [
                make_divisible(width * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
                for width_mult in self.width_mult_list
            ]

        n_block_list = [
            base_depth + max(self.depth_list)
            for base_depth in ResNets.BASE_DEPTH_LIST
        ]
        stride_list = [1, 2, 2, 2]

        # build input stem
        input_stem = [
            DynamicConvLayer(val2list(3),
                             mid_input_channel,
                             3,
                             stride=2,
                             use_bn=True,
                             act_func='relu'),
            ResidualBlock(
                DynamicConvLayer(mid_input_channel,
                                 mid_input_channel,
                                 3,
                                 stride=1,
                                 use_bn=True,
                                 act_func='relu'),
                IdentityLayer(mid_input_channel, mid_input_channel)),
            DynamicConvLayer(mid_input_channel,
                             input_channel,
                             3,
                             stride=1,
                             use_bn=True,
                             act_func='relu')
        ]

        # blocks
        blocks = []
        for d, width, s in zip(n_block_list, stage_width_list, stride_list):
            for i in range(d):
                stride = s if i == 0 else 1
                bottleneck_block = DynamicResNetBottleneckBlock(
                    input_channel,
                    width,
                    expand_ratio_list=self.expand_ratio_list,
                    kernel_size=3,
                    stride=stride,
                    act_func='relu',
                    downsample_mode='avgpool_conv',
                )
                blocks.append(bottleneck_block)
                input_channel = width
        # classifier
        classifier = DynamicLinearLayer(input_channel,
                                        n_classes,
                                        dropout_rate=dropout_rate)

        super(OFAResNets, self).__init__(input_stem, blocks, classifier)

        # set bn param
        self.set_bn_param(*bn_param)

        # runtime_depth
        self.input_stem_skipping = 0
        self.runtime_depth = [0] * len(n_block_list)
示例#12
0
 def active_middle_channels(self):
     feature_dim = round(self.active_out_channel * self.active_expand_ratio)
     feature_dim = make_divisible(feature_dim, MyNetwork.CHANNEL_DIVISIBLE)
     return feature_dim
示例#13
0
 def active_middle_channel(self, in_channel):
     return make_divisible(round(in_channel * self.active_expand_ratio), MyNetwork.CHANNEL_DIVISIBLE)
示例#14
0
	def __init__(self, n_classes=1000, bn_param=(0.1, 1e-3), dropout_rate=0.1, base_stage_width=None, width_mult=1.0,
	             ks_list=3, expand_ratio_list=6, depth_list=4):

		self.width_mult = width_mult
		self.ks_list = val2list(ks_list, 1)
		self.expand_ratio_list = val2list(expand_ratio_list, 1)
		self.depth_list = val2list(depth_list, 1)

		self.ks_list.sort()
		self.expand_ratio_list.sort()
		self.depth_list.sort()

		if base_stage_width == 'google':
			# MobileNetV2 Stage Width
			base_stage_width = [32, 16, 24, 32, 64, 96, 160, 320, 1280]
		else:
			# ProxylessNAS Stage Width
			base_stage_width = [32, 16, 24, 40, 80, 96, 192, 320, 1280]

		input_channel = make_divisible(base_stage_width[0] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE)
		first_block_width = make_divisible(base_stage_width[1] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE)
		last_channel = make_divisible(base_stage_width[-1] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE)

		# first conv layer
		first_conv = ConvLayer(
			3, input_channel, kernel_size=3, stride=2, use_bn=True, act_func='relu6', ops_order='weight_bn_act'
		)
		# first block
		first_block_conv = MBConvLayer(
			in_channels=input_channel, out_channels=first_block_width, kernel_size=3, stride=1,
			expand_ratio=1, act_func='relu6',
		)
		first_block = ResidualBlock(first_block_conv, None)

		input_channel = first_block_width
		# inverted residual blocks
		self.block_group_info = []
		blocks = [first_block]
		_block_index = 1

		stride_stages = [2, 2, 2, 1, 2, 1]
		n_block_list = [max(self.depth_list)] * 5 + [1]

		width_list = []
		for base_width in base_stage_width[2:-1]:
			width = make_divisible(base_width * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE)
			width_list.append(width)

		for width, n_block, s in zip(width_list, n_block_list, stride_stages):
			self.block_group_info.append([_block_index + i for i in range(n_block)])
			_block_index += n_block

			output_channel = width
			for i in range(n_block):
				if i == 0:
					stride = s
				else:
					stride = 1

				mobile_inverted_conv = DynamicMBConvLayer(
					in_channel_list=val2list(input_channel, 1), out_channel_list=val2list(output_channel, 1),
					kernel_size_list=ks_list, expand_ratio_list=expand_ratio_list, stride=stride, act_func='relu6',
				)

				if stride == 1 and input_channel == output_channel:
					shortcut = IdentityLayer(input_channel, input_channel)
				else:
					shortcut = None

				mb_inverted_block = ResidualBlock(mobile_inverted_conv, shortcut)

				blocks.append(mb_inverted_block)
				input_channel = output_channel
		# 1x1_conv before global average pooling
		feature_mix_layer = ConvLayer(
			input_channel, last_channel, kernel_size=1, use_bn=True, act_func='relu6',
		)
		classifier = LinearLayer(last_channel, n_classes, dropout_rate=dropout_rate)

		super(OFAProxylessNASNets, self).__init__(first_conv, blocks, feature_mix_layer, classifier)

		# set bn param
		self.set_bn_param(momentum=bn_param[0], eps=bn_param[1])

		# runtime_depth
		self.runtime_depth = [len(block_idx) for block_idx in self.block_group_info]
示例#15
0
	def __init__(self, n_classes=1000, width_mult=1.0, bn_param=(0.1, 1e-3), dropout_rate=0.2,
	             ks=None, expand_ratio=None, depth_param=None, stage_width_list=None):

		ks = 3 if ks is None else ks
		expand_ratio = 6 if expand_ratio is None else expand_ratio

		input_channel = 32
		last_channel = 1280

		input_channel = make_divisible(input_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
		last_channel = make_divisible(last_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE) \
			if width_mult > 1.0 else last_channel

		inverted_residual_setting = [
			# t, c, n, s
			[1, 16, 1, 1],
			[expand_ratio, 24, 2, 2],
			[expand_ratio, 32, 3, 2],
			[expand_ratio, 64, 4, 2],
			[expand_ratio, 96, 3, 1],
			[expand_ratio, 160, 3, 2],
			[expand_ratio, 320, 1, 1],
		]

		if depth_param is not None:
			assert isinstance(depth_param, int)
			for i in range(1, len(inverted_residual_setting) - 1):
				inverted_residual_setting[i][2] = depth_param

		if stage_width_list is not None:
			for i in range(len(inverted_residual_setting)):
				inverted_residual_setting[i][1] = stage_width_list[i]

		ks = val2list(ks, sum([n for _, _, n, _ in inverted_residual_setting]) - 1)
		_pt = 0

		# first conv layer
		first_conv = ConvLayer(
			3, input_channel, kernel_size=3, stride=2, use_bn=True, act_func='relu6', ops_order='weight_bn_act'
		)
		# inverted residual blocks
		blocks = []
		for t, c, n, s in inverted_residual_setting:
			output_channel = make_divisible(c * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
			for i in range(n):
				if i == 0:
					stride = s
				else:
					stride = 1
				if t == 1:
					kernel_size = 3
				else:
					kernel_size = ks[_pt]
					_pt += 1
				mobile_inverted_conv = MBConvLayer(
					in_channels=input_channel, out_channels=output_channel, kernel_size=kernel_size, stride=stride,
					expand_ratio=t,
				)
				if stride == 1:
					if input_channel == output_channel:
						shortcut = IdentityLayer(input_channel, input_channel)
					else:
						shortcut = None
				else:
					shortcut = None
				blocks.append(
					ResidualBlock(mobile_inverted_conv, shortcut)
				)
				input_channel = output_channel
		# 1x1_conv before global average pooling
		feature_mix_layer = ConvLayer(
			input_channel, last_channel, kernel_size=1, use_bn=True, act_func='relu6', ops_order='weight_bn_act',
		)

		classifier = LinearLayer(last_channel, n_classes, dropout_rate=dropout_rate)

		super(MobileNetV2, self).__init__(first_conv, blocks, feature_mix_layer, classifier)

		# set bn param
		self.set_bn_param(*bn_param)