示例#1
0
    def test_convert_to_heatmap(self):
        image = tf.placeholder(tf.float32, shape=[None, None])
        heatmap = plotlib.convert_to_heatmap(tf.expand_dims(image, 0),
                                             normalize=True)

        with self.test_session() as sess:
            kernel = imgproc._py_gaussian_kernel(ksize=100)
            kernel_heatmap = sess.run(heatmap[0], feed_dict={image: kernel})
        kernel_heatmap = (kernel_heatmap * 255).astype(np.uint8)

        filename = _TMPDIR + "/convert_to_heatmap.png"
        cv2.imwrite(filename, kernel_heatmap[:, :, ::-1])  # RGB to BGR.
        tf.logging.info("The kernel image is written to %s.", filename)
示例#2
0
    def visualize(self,
                  image,
                  saliency,
                  interpolation=tf.image.ResizeMethod.NEAREST_NEIGHBOR):
        """Visualizes images to tensorboard.

    Args:
      image: a [batch, height, width, channels] float tensor, in [0, 255].
      saliency: a [batch, feature_height, feature_width] float tensor.
    """
        (batch, height, width, channels) = utils.get_tensor_shape(image)

        image = image / 255.0
        heatmap = plotlib.convert_to_heatmap(saliency, normalize=True)
        heatmap = tf.image.resize_images(heatmap, [height, width],
                                         interpolation)

        heatmap = plotlib.gaussian_filter(heatmap, ksize=32)

        image = tf.maximum(0.0, tf.concat([image, heatmap], axis=2))
        tf.summary.image("images", image, max_outputs=10)
示例#3
0
    def _visl_class_activation_map(self,
                                   image,
                                   class_activation_map,
                                   height=224,
                                   width=224):
        """Visualize class activation map to the tensorboard.

    Args:
      image: A [batch, height, width, channels] float tensor, 
        ranging from 0 to 255.
      class_activation_map: A [batch, height, width, num_classes] float tensor.
      height: Height of the visualized image.
      width: Width of the visualized image.
    """
        options = self._model_proto

        batch, _, _, _ = utils.get_tensor_shape(image)

        # Initialize text labels to attach to images.

        vocabulary_list = [
            tf.tile(tf.expand_dims(w, axis=0), [batch])
            for w in self._vocabulary_list
        ]

        merge_v_fn = lambda x: tf.concat(x, axis=1)
        merge_h_fn = lambda x: tf.concat(x, axis=2)

        # Visualize heat map from different resolutions.

        image_visl = tf.cast(
            tf.image.resize_images(image, [height * 2, width * 2]), tf.uint8)

        min_v = tf.reduce_min(class_activation_map,
                              axis=[1, 2, 3],
                              keepdims=True)
        max_v = tf.reduce_max(class_activation_map,
                              axis=[1, 2, 3],
                              keepdims=True)
        class_activation_map = (class_activation_map - min_v) / (max_v - min_v)

        visl_list_at_i = []
        for class_id, x in enumerate(
                tf.unstack(tf.image.resize_images(class_activation_map,
                                                  [height, width]),
                           axis=-1)):
            class_name = vocabulary_list[class_id]

            # Draw class-related heat map.

            x = plotlib.convert_to_heatmap(x, normalize=False)
            x = tf.image.convert_image_dtype(x, tf.uint8)
            x = plotlib.draw_caption(x,
                                     class_name,
                                     org=(0, 0),
                                     color=plotlib.RED)
            visl_list_at_i.append(x)

        half_size = len(visl_list_at_i) // 2
        visl_image = merge_h_fn([image_visl] + [
            merge_v_fn([
                merge_h_fn(visl_list_at_i[:half_size]),
                merge_h_fn(visl_list_at_i[half_size:])
            ])
        ])

        tf.summary.image("heatmap", visl_image, max_outputs=5)
示例#4
0
  def _predict_labels(self, examples):
    """Builds tf graph for prediction.

    Args:
      examples: dict of input tensors keyed by name.

    Returns:
      predictions: dict of prediction results keyed by name.
    """
    options = self._model_proto
    is_training = self._is_training

    # Extract input data fields.

    (image, image_id, num_captions, caption_strings,
     caption_lengths) = (examples[InputDataFields.image],
                         examples[InputDataFields.image_id],
                         examples[InputDataFields.num_captions],
                         examples[InputDataFields.caption_strings],
                         examples[InputDataFields.caption_lengths])

    class_act_map_predictions = self._calc_class_act_map(examples)
    (class_act_map,
     logits) = (class_act_map_predictions[VOCPredictions.class_act_map],
                class_act_map_predictions[VOCPredictions.logits])

    # Load the vocabulary.
    vocabulary_list = self._read_vocabulary(options.vocabulary_file)
    tf.logging.info("Read a vocabulary with %i words.", len(vocabulary_list))

    # Encode labels, shape=[batch, num_classes].

    class_labels = self._encode_labels(num_captions, caption_strings,
                                       caption_lengths, vocabulary_list)

    # visualize

    with tf.name_scope("visualize"):
      image_vis = tf.cast(image, tf.uint8)
      image_vis = plotlib.draw_caption(
          image_vis,
          tf.reduce_join(caption_strings[:, 0, :], axis=-1, separator=','),
          org=(5, 5),
          fontscale=1.0,
          color=(255, 0, 0),
          thickness=1)
      image_vis = plotlib.draw_caption(
          image_vis,
          tf.gather(vocabulary_list, tf.argmax(logits, axis=-1)),
          org=(5, 25),
          fontscale=1.0,
          color=(255, 0, 0),
          thickness=1)

      class_act_map_list = []
      batch_size, height, width, _ = utils.get_tensor_shape(image_vis)
      for i, x in enumerate(tf.unstack(class_act_map, axis=-1)):
        x = plotlib.convert_to_heatmap(x, normalize=True, normalize_to=[-4, 4])
        #x = tf.image.resize_images(x, [height, width], tf.image.ResizeMethod.NEAREST_NEIGHBOR)
        x = tf.image.resize_images(x, [height, width])
        x = imgproc.gaussian_filter(x, ksize=32)
        x = tf.image.convert_image_dtype(x, tf.uint8)
        x = plotlib.draw_caption(
            x,
            tf.tile(tf.expand_dims(vocabulary_list[i], axis=0), [batch_size]),
            org=(5, 5),
            fontscale=1.0,
            color=(255, 0, 0),
            thickness=1)
        class_act_map_list.append(x)
      tf.summary.image(
          "image",
          tf.concat([image_vis] + class_act_map_list, axis=2),
          max_outputs=1)

    predictions = {
        VOCPredictions.image_id: image_id,
        VOCPredictions.class_labels: class_labels,
        VOCPredictions.class_act_map: class_act_map,
        VOCPredictions.logits: logits,
    }

    return predictions
示例#5
0
    def _visl_class_activation_map_list(self,
                                        image,
                                        class_act_map_list,
                                        anchors,
                                        anchor_scores_list,
                                        vocabulary_list,
                                        height=224,
                                        width=224):
        """Visualize class activation map to the tensorboard.

    Args:
      image: A [batch, height, width, channels] float tensor, 
        ranging from 0 to 255.
      class_act_map_list: A list of class activation map, each of them is a
        [batch, height, width, num_classes] float tensor.
      anchors: A [batch, number_of_anchors, 4] float tensor, in normalized
        coordinates.
      anchor_scores_list: A list of [batch, number_of_anchors, num_classes]
        float tensor.
      vocabulary_list: Names of the classes.
      height: Height of the visualized image.
      width: Width of the visualized image.
    """
        options = self._model_proto

        batch, _, _, _ = utils.get_tensor_shape(image)

        # Initialize text labels to attach to images.

        vocabulary_list = [
            tf.tile(tf.expand_dims(w, axis=0), [batch])
            for w in vocabulary_list
        ]
        if options.feature_extractor == cam_model_pb2.CAMModel.FRCNN:
            text_list = [
                tf.tile(tf.expand_dims('scale %.2lf' % (s), axis=0), [batch])
                for s in self._input_scales
            ]
        elif options.feature_extractor == cam_model_pb2.CAMModel.SSD:
            text_list = [
                tf.tile(
                    tf.expand_dims('layer %s' % (n.split('/')[-1]), axis=0),
                    [batch]) for n in self._cnn_feature_names
            ]

        merge_v_fn = lambda x: tf.concat(x, axis=1)
        merge_h_fn = lambda x: tf.concat(x, axis=2)

        # Visualize heat map from different resolutions.

        visl_list = []
        for class_act_map, anchor_scores, text in zip(class_act_map_list,
                                                      anchor_scores_list,
                                                      text_list):

            image_visl = plotlib.draw_caption(
                tf.cast(tf.image.resize_images(image, [height * 2, width * 2]),
                        tf.uint8), text, (5, 5), plotlib.RED)

            visl_list_at_i = []
            for class_id, x in enumerate(
                    tf.unstack(tf.image.resize_images(class_act_map,
                                                      [height, width]),
                               axis=-1)):
                class_name = vocabulary_list[class_id]

                # Look for the top-k box.

                top_k = 1
                top_k_boxes, top_k_scores, _ = model_utils.get_top_k_boxes_and_scores(
                    anchors, anchor_scores[:, :, class_id], k=top_k)

                # Draw class-related heat map.

                x = plotlib.convert_to_heatmap(x, normalize=False)
                x = tf.image.convert_image_dtype(x, tf.uint8)
                x = plotlib.draw_caption(x,
                                         class_name,
                                         org=(0, 0),
                                         color=plotlib.RED)

                # Draw bounding box.

                x = plotlib.draw_rectangles(x,
                                            boxes=top_k_boxes,
                                            scores=top_k_scores,
                                            color=plotlib.BLACK)
                image_visl = plotlib.draw_rectangles(image_visl,
                                                     boxes=top_k_boxes,
                                                     color=plotlib.GREEN)

                visl_list_at_i.append(x)

            half_size = len(visl_list_at_i) // 2
            visl_list.append(
                merge_h_fn([image_visl] + [
                    merge_v_fn([
                        merge_h_fn(visl_list_at_i[:half_size]),
                        merge_h_fn(visl_list_at_i[half_size:])
                    ])
                ]))

        tf.summary.image("image", merge_v_fn(visl_list), max_outputs=5)