示例#1
0
    def testNoFlipWhenProbIsZero(self):
        numpy_image = np.dstack([[[5., 6.], [9., 0.]], [[4., 3.], [3., 5.]]])
        image = tf.convert_to_tensor(numpy_image)

        with self.test_session():
            actual, is_flipped = preprocess_utils.flip_dim([image],
                                                           prob=0,
                                                           dim=0)
            self.assertAllEqual(numpy_image, actual.eval())
            self.assertAllEqual(False, is_flipped.eval())
            actual, is_flipped = preprocess_utils.flip_dim([image],
                                                           prob=0,
                                                           dim=1)
            self.assertAllEqual(numpy_image, actual.eval())
            self.assertAllEqual(False, is_flipped.eval())
            actual, is_flipped = preprocess_utils.flip_dim([image],
                                                           prob=0,
                                                           dim=2)
            self.assertAllEqual(numpy_image, actual.eval())
            self.assertAllEqual(False, is_flipped.eval())
示例#2
0
    def testFlipWhenProbIsOne(self):
        numpy_image = np.dstack([[[5., 6.], [9., 0.]], [[4., 3.], [3., 5.]]])
        dim0_flipped = np.dstack([[[9., 0.], [5., 6.]], [[3., 5.], [4., 3.]]])
        dim1_flipped = np.dstack([[[6., 5.], [0., 9.]], [[3., 4.], [5., 3.]]])
        dim2_flipped = np.dstack([[[4., 3.], [3., 5.]], [[5., 6.], [9., 0.]]])
        image = tf.convert_to_tensor(numpy_image)

        with self.test_session():
            actual, is_flipped = preprocess_utils.flip_dim([image],
                                                           prob=1,
                                                           dim=0)
            self.assertAllEqual(dim0_flipped, actual.eval())
            self.assertAllEqual(True, is_flipped.eval())
            actual, is_flipped = preprocess_utils.flip_dim([image],
                                                           prob=1,
                                                           dim=1)
            self.assertAllEqual(dim1_flipped, actual.eval())
            self.assertAllEqual(True, is_flipped.eval())
            actual, is_flipped = preprocess_utils.flip_dim([image],
                                                           prob=1,
                                                           dim=2)
            self.assertAllEqual(dim2_flipped, actual.eval())
            self.assertAllEqual(True, is_flipped.eval())
示例#3
0
    def testReturnRandomFlipsOnMultipleEvals(self):
        numpy_image = np.dstack([[[5., 6.], [9., 0.]], [[4., 3.], [3., 5.]]])
        dim1_flipped = np.dstack([[[6., 5.], [0., 9.]], [[3., 4.], [5., 3.]]])
        image = tf.convert_to_tensor(numpy_image)
        tf.set_random_seed(53)

        with self.test_session() as sess:
            actual, is_flipped = preprocess_utils.flip_dim([image],
                                                           prob=0.5,
                                                           dim=1)
            actual_image, actual_is_flipped = sess.run([actual, is_flipped])
            self.assertAllEqual(numpy_image, actual_image)
            self.assertEqual(False, actual_is_flipped)
            actual_image, actual_is_flipped = sess.run([actual, is_flipped])
            self.assertAllEqual(dim1_flipped, actual_image)
            self.assertEqual(True, actual_is_flipped)
示例#4
0
    def testFlipMultipleImagesConsistentlyWhenProbIsOne(self):
        numpy_image = np.dstack([[[5., 6.], [9., 0.]], [[4., 3.], [3., 5.]]])
        numpy_label = np.dstack([[[0., 1.], [2., 3.]]])
        image_dim1_flipped = np.dstack([[[6., 5.], [0., 9.]],
                                        [[3., 4.], [5., 3.]]])
        label_dim1_flipped = np.dstack([[[1., 0.], [3., 2.]]])
        image = tf.convert_to_tensor(numpy_image)
        label = tf.convert_to_tensor(numpy_label)

        with self.test_session() as sess:
            image, label, is_flipped = preprocess_utils.flip_dim(
                [image, label], prob=1, dim=1)
            actual_image, actual_label = sess.run([image, label])
            self.assertAllEqual(image_dim1_flipped, actual_image)
            self.assertAllEqual(label_dim1_flipped, actual_label)
            self.assertEqual(True, is_flipped.eval())
示例#5
0
def preprocess_image_and_label(image,
                               label,
                               crop_height,
                               crop_width,
                               min_resize_value=None,
                               max_resize_value=None,
                               resize_factor=None,
                               min_scale_factor=1.,
                               max_scale_factor=1.,
                               scale_factor_step_size=0,
                               ignore_label=255,
                               is_training=True,
                               model_variant=None):
    """Preprocesses the image and label.

    Args:
      image: Input image.
      label: Ground truth annotation label.
      crop_height: The height value used to crop the image and label.
      crop_width: The width value used to crop the image and label.
      min_resize_value: Desired size of the smaller image side.
      max_resize_value: Maximum allowed size of the larger image side.
      resize_factor: Resized dimensions are multiple of factor plus one.
      min_scale_factor: Minimum scale factor value.
      max_scale_factor: Maximum scale factor value.
      scale_factor_step_size: The step size from min scale factor to max scale
        factor. The input is randomly scaled based on the value of
        (min_scale_factor, max_scale_factor, scale_factor_step_size).
      ignore_label: The label value which will be ignored for training and
        evaluation.
      is_training: If the preprocessing is used for training or not.
      model_variant: Model variant (string) for choosing how to mean-subtract the
        images. See feature_extractor.network_map for supported model variants.

    Returns:
      original_image: Original image (could be resized).
      processed_image: Preprocessed image.
      label: Preprocessed ground truth segmentation label.

    Raises:
      ValueError: Ground truth label not provided during training.
    """
    if is_training and label is None:
        raise ValueError('During training, label must be provided.')
    if model_variant is None:
        tf.logging.warning(
            'Default mean-subtraction is performed. Please specify '
            'a model_variant. See feature_extractor.network_map for '
            'supported model variants.')

    # Keep reference to original image.
    original_image = image

    processed_image = tf.cast(image, tf.float32)

    if label is not None:
        label = tf.cast(label, tf.int32)

    # Resize image and label to the desired range.
    if min_resize_value is not None or max_resize_value is not None:
        [processed_image,
         label] = (preprocess_utils.resize_to_range(image=processed_image,
                                                    label=label,
                                                    min_size=min_resize_value,
                                                    max_size=max_resize_value,
                                                    factor=resize_factor,
                                                    align_corners=True))
        # The `original_image` becomes the resized image.
        original_image = tf.identity(processed_image)

    # Data augmentation by randomly scaling the inputs.
    if is_training:
        scale = preprocess_utils.get_random_scale(min_scale_factor,
                                                  max_scale_factor,
                                                  scale_factor_step_size)
        processed_image, label = preprocess_utils.randomly_scale_image_and_label(
            processed_image, label, scale)
        processed_image.set_shape([None, None, 3])

    # Pad image and label to have dimensions >= [crop_height, crop_width]
    image_shape = tf.shape(processed_image)
    image_height = image_shape[0]
    image_width = image_shape[1]

    target_height = image_height + tf.maximum(crop_height - image_height, 0)
    target_width = image_width + tf.maximum(crop_width - image_width, 0)

    # Pad image with mean pixel value.
    mean_pixel = tf.reshape(feature_extractor.mean_pixel(model_variant),
                            [1, 1, 3])
    processed_image = preprocess_utils.pad_to_bounding_box(
        processed_image, 0, 0, target_height, target_width, mean_pixel)

    if label is not None:
        label = preprocess_utils.pad_to_bounding_box(label, 0, 0,
                                                     target_height,
                                                     target_width,
                                                     ignore_label)

    # Randomly crop the image and label.
    if is_training and label is not None:
        processed_image, label = preprocess_utils.random_crop(
            [processed_image, label], crop_height, crop_width)

    processed_image.set_shape([crop_height, crop_width, 3])

    if label is not None:
        label.set_shape([crop_height, crop_width, 1])

    if is_training:
        # Randomly left-right flip the image and label.
        processed_image, label, _ = preprocess_utils.flip_dim(
            [processed_image, label], _PROB_OF_FLIP, dim=1)

    return original_image, processed_image, label
示例#6
0
def preprocess_image_and_label(image,
                               label,
                               crop_height,
                               crop_width,
                               min_resize_value=None,
                               max_resize_value=None,
                               resize_factor=None,
                               min_scale_factor=1.,
                               max_scale_factor=1.,
                               scale_factor_step_size=0,
                               ignore_label=255,
                               is_training=True,
                               model_variant=None):
  """Preprocesses the image and label.

  Args:
    image: Input image.
    label: Ground truth annotation label.
    crop_height: The height value used to crop the image and label.
    crop_width: The width value used to crop the image and label.
    min_resize_value: Desired size of the smaller image side.
    max_resize_value: Maximum allowed size of the larger image side.
    resize_factor: Resized dimensions are multiple of factor plus one.
    min_scale_factor: Minimum scale factor value.
    max_scale_factor: Maximum scale factor value.
    scale_factor_step_size: The step size from min scale factor to max scale
      factor. The input is randomly scaled based on the value of
      (min_scale_factor, max_scale_factor, scale_factor_step_size).
    ignore_label: The label value which will be ignored for training and
      evaluation.
    is_training: If the preprocessing is used for training or not.
    model_variant: Model variant (string) for choosing how to mean-subtract the
      images. See feature_extractor.network_map for supported model variants.

  Returns:
    original_image: Original image (could be resized).
    processed_image: Preprocessed image.
    label: Preprocessed ground truth segmentation label.

  Raises:
    ValueError: Ground truth label not provided during training.
  """
  if is_training and label is None:
    raise ValueError('During training, label must be provided.')
  if model_variant is None:
    tf.logging.warning('Default mean-subtraction is performed. Please specify '
                       'a model_variant. See feature_extractor.network_map for '
                       'supported model variants.')

  # Keep reference to original image.
  original_image = image

  processed_image = tf.cast(image, tf.float32)

  if label is not None:
    label = tf.cast(label, tf.int32)

  # Resize image and label to the desired range.
  if min_resize_value is not None or max_resize_value is not None:
    [processed_image, label] = (
        preprocess_utils.resize_to_range(
            image=processed_image,
            label=label,
            min_size=min_resize_value,
            max_size=max_resize_value,
            factor=resize_factor,
            align_corners=True))
    # The `original_image` becomes the resized image.
    original_image = tf.identity(processed_image)

  # Data augmentation by randomly scaling the inputs.
  scale = preprocess_utils.get_random_scale(
      min_scale_factor, max_scale_factor, scale_factor_step_size)
  processed_image, label = preprocess_utils.randomly_scale_image_and_label(
      processed_image, label, scale)
  processed_image.set_shape([None, None, 3])

  # Pad image and label to have dimensions >= [crop_height, crop_width]
  image_shape = tf.shape(processed_image)
  image_height = image_shape[0]
  image_width = image_shape[1]

  target_height = image_height + tf.maximum(crop_height - image_height, 0)
  target_width = image_width + tf.maximum(crop_width - image_width, 0)

  # Pad image with mean pixel value.
  mean_pixel = tf.reshape(
      feature_extractor.mean_pixel(model_variant), [1, 1, 3])
  processed_image = preprocess_utils.pad_to_bounding_box(
      processed_image, 0, 0, target_height, target_width, mean_pixel)

  if label is not None:
    label = preprocess_utils.pad_to_bounding_box(
        label, 0, 0, target_height, target_width, ignore_label)

  # Randomly crop the image and label.
  if is_training and label is not None:
    processed_image, label = preprocess_utils.random_crop(
        [processed_image, label], crop_height, crop_width)

  processed_image.set_shape([crop_height, crop_width, 3])

  if label is not None:
    label.set_shape([crop_height, crop_width, 1])

  if is_training:
    # Randomly left-right flip the image and label.
    processed_image, label, _ = preprocess_utils.flip_dim(
        [processed_image, label], _PROB_OF_FLIP, dim=1)

  return original_image, processed_image, label
def preprocess_image_and_label_test(image,
                                    label,
                                    crop_height,
                                    crop_width,
                                    min_resize_value=None,
                                    max_resize_value=None,
                                    resize_factor=None,
                                    min_scale_factor=1.,
                                    max_scale_factor=1.,
                                    scale_factor_step_size=0,
                                    ignore_label=255,
                                    is_training=True,
                                    model_variant=None):

    if is_training and label is None:
        raise ValueError('During training, label must be provided.')
    if model_variant is None:
        tf.logging.warning(
            'Default mean-subtraction is performed. Please specify '
            'a model_variant. See feature_extractor.network_map for '
            'supported model variants.')

    # Keep reference to original image.
    original_image = image

    processed_image = tf.cast(image, tf.float32)

    if label is not None:
        label = tf.cast(label, tf.int32)

        # The `original_image` becomes the resized image.
        original_image = tf.identity(processed_image)

    processed_image = tf.expand_dims(processed_image, 0)
    #if label is not None:
    #  label.set_shape([crop_height, crop_width, 1])
    print('processed_image:', processed_image)
    processed_image = tf.image.resize_bilinear(processed_image,
                                               [crop_height, crop_width],
                                               align_corners=True)
    if is_training:
        processed_image = color_augmentation(processed_image)

    #processed_image.set_shape([crop_height, crop_width, 3])
    label = tf.expand_dims(label, 0)
    label = tf.image.resize_bilinear(label, [crop_height, crop_width],
                                     align_corners=True)

    if is_training:
        # Randomly left-right flip the image and label.
        processed_image, label, _ = preprocess_utils.flip_dim(
            [processed_image, label], _PROB_OF_FLIP, dim=1)

        #t_xy = tf.random_normal([2], mean=0, stddev=10, seed = tf.set_random_seed(1234))
        #t_xy_out = tf.cast(t_xy, dtype=tf.int32)

        t_x = tf.random_normal([1],
                               mean=0,
                               stddev=20,
                               seed=tf.set_random_seed(1234))
        t_y = tf.random_normal([1],
                               mean=0,
                               stddev=5,
                               seed=tf.set_random_seed(1234))

        t_x = tf.cast(t_x, dtype=tf.int32)
        t_y = tf.cast(t_y, dtype=tf.int32)
        t_y = tf.abs(t_y)

        #image_aug = tf_image_translate(image_aug, tx=t_x[0], ty=t_y[0])

        processed_image = tf_image_translate(processed_image,
                                             tx=t_x[0],
                                             ty=t_y[0])
        label = tf_image_translate(label, tx=t_x[0], ty=t_y[0])
        processed_image = gaussian_noise_layer(processed_image, std=0.1)
        processed_image = negative_layer(processed_image)

    #processed_image = tf.image.rgb_to_grayscale(processed_image)
    #processed_image = tf.image.grayscale_to_rgb(processed_image)
    processed_image = tf.squeeze(processed_image, squeeze_dims=0, name=None)
    label = tf.squeeze(label, squeeze_dims=0, name=None)
    return original_image, processed_image, label
def preprocess_image_and_label_seq(
    image,
    label,
    prior_segs,
    crop_height,
    crop_width,
    channel,
    seq_length,
    label_for_each_frame,
    pre_crop_height=None,
    pre_crop_width=None,
    num_class=None,
    HU_window=None,
    min_resize_value=None,
    max_resize_value=None,
    resize_factor=None,
    min_scale_factor=1.,
    max_scale_factor=1.,
    scale_factor_step_size=0,
    ignore_label=255,
    rotate_angle=None,
    is_training=True,
    model_variant=None,
):
    """Preprocesses the image and label.
  Args:
    image: Input image.
    label: Ground truth annotation label.
    crop_height: The height value used to crop the image and label.
    crop_width: The width value used to crop the image and label.
    min_resize_value: Desired size of the smaller image side.
    max_resize_value: Maximum allowed size of the larger image side.
    resize_factor: Resized dimensions are multiple of factor plus one.
    min_scale_factor: Minimum scale factor value.
    max_scale_factor: Maximum scale factor value.
    scale_factor_step_size: The step size from min scale factor to max scale
      factor. The input is randomly scaled based on the value of
      (min_scale_factor, max_scale_factor, scale_factor_step_size).
    ignore_label: The label value which will be ignored for training and
      evaluation.
    is_training: If the preprocessing is used for training or not.
    model_variant: Model variant (string) for choosing how to mean-subtract the
      images. See feature_extractor.network_map for supported model variants.
  Returns:
    original_image: Original image (could be resized).
    processed_image: Preprocessed image.
    label: Preprocessed ground truth segmentation label.
  Raises:
    ValueError: Ground truth label not provided during training.
  """
    if is_training and label is None:
        raise ValueError('During training, label must be provided.')
    # if (prior_num_slice is not None) != (prior_imgs is not None or prior_segs is not None):
    #   raise ValueError('prior_num_slice should exist when import prior and vice versa')
    if model_variant is None:
        tf.logging.warning(
            'Default mean-subtraction is performed. Please specify '
            'a model_variant. See feature_extractor.network_map for '
            'supported model variants.')

    # Keep reference to original image.
    original_image = image
    original_label = label

    # sample prior if exist
    # TODO: sample problem (consider z gt)
    # data type and value convert
    if HU_window is not None:
        image = preprocess_utils.HU_to_pixelvalue(image, HU_window)
    processed_image = tf.cast(image, tf.float32)

    if label is not None:
        label = tf.cast(label, tf.int32)

    if pre_crop_height is not None and pre_crop_width is not None:
        if is_training and label is not None:
            if prior_segs is not None:
                processed_image, label, prior_segs = preprocess_utils.random_crop(
                    [processed_image, label, prior_segs], pre_crop_height,
                    pre_crop_width)
            else:
                processed_image, label = preprocess_utils.random_crop(
                    [processed_image, label], pre_crop_height, pre_crop_width)

    # Resize image and label to the desired range.
    # TODO: interface for this func.
    if min_resize_value or max_resize_value:
        [processed_image,
         label] = (preprocess_utils.resize_to_range(image=processed_image,
                                                    label=label,
                                                    min_size=min_resize_value,
                                                    max_size=max_resize_value,
                                                    factor=resize_factor,
                                                    align_corners=True))
        # The `original_image` becomes the resized image.
        original_image = tf.identity(processed_image)

        if prior_segs is not None:
            # prior_segs = tf.cast(prior_segs, tf.int32)
            prior_segs, _ = (preprocess_utils.resize_to_range(
                image=prior_segs,
                min_size=min_resize_value,
                max_size=max_resize_value,
                factor=resize_factor,
                align_corners=True))

    # Data augmentation by randomly scaling the inputs.
    if is_training:
        scale = preprocess_utils.get_random_scale(min_scale_factor,
                                                  max_scale_factor,
                                                  scale_factor_step_size)
        processed_image, label = preprocess_utils.randomly_scale_image_and_label(
            processed_image, label, scale)
        processed_image.set_shape([None, None, seq_length * channel])

        if prior_segs is not None:
            prior_segs = preprocess_utils.scale_image_data(prior_segs, scale)

    # Pad image and label to have dimensions >= [crop_height, crop_width]
    image_shape = tf.shape(processed_image)
    # image_shape = processed_image.get_shape().as_list()
    image_height = image_shape[0]
    image_width = image_shape[1]

    target_height = image_height + tf.maximum(crop_height - image_height, 0)
    target_width = image_width + tf.maximum(crop_width - image_width, 0)

    # Pad image with mean pixel value.
    # TODO: check padding value
    # mean_pixel = tf.reshape(
    #     features_extractor.mean_pixel(model_variant), [1, 1, 3])
    mean_pixel = 0.0
    processed_image = preprocess_utils.pad_to_bounding_box(
        processed_image, 0, 0, target_height, target_width, mean_pixel)

    if label is not None:
        label = preprocess_utils.pad_to_bounding_box(label, 0, 0,
                                                     target_height,
                                                     target_width, 0)

    if prior_segs is not None:
        prior_segs = preprocess_utils.pad_to_bounding_box(
            prior_segs, 0, 0, target_height, target_width, 0)

    # Randomly crop the image and label.
    # TODO: Do it in the right way
    # TODO: offset_height, offset_width for input
    # processed_image, label = preprocess_utils.random_crop(
    #         [processed_image, label], crop_height, crop_width)

    if is_training and label is not None:
        if prior_segs is not None:
            processed_image, label, prior_segs = preprocess_utils.random_crop(
                [processed_image, label, prior_segs], crop_height, crop_width)
        else:
            processed_image, label = preprocess_utils.random_crop(
                [processed_image, label], crop_height, crop_width)

    processed_image.set_shape([crop_height, crop_width, seq_length * channel])
    if label is not None:
        label.set_shape([crop_height, crop_width, seq_length * channel])
        # if label_for_each_frame:
        #   label.set_shape([crop_height, crop_width, seq_length*channel])
        # else:
        #   label.set_shape([crop_height, crop_width, 1])
    if prior_segs is not None:
        prior_segs = tf.squeeze(tf.image.resize_bilinear(
            tf.expand_dims(prior_segs, axis=0), [crop_height, crop_width]),
                                axis=0)
        # prior_segs.set_shape([crop_height,crop_width,num_class])

    if is_training:
        # Randomly left-right flip the image and label.
        if prior_segs is not None:
            processed_image, label, prior_segs, _ = preprocess_utils.flip_dim(
                [processed_image, label, prior_segs], _PROB_OF_FLIP, dim=1)
        else:
            processed_image, label, _ = preprocess_utils.flip_dim(
                [processed_image, label], _PROB_OF_FLIP, dim=1)

        # TODO: coplete random rotate method
        # Randomly rotate the image and label.
        if rotate_angle is not None:
            pass
            # processed_image, label, _ = preprocess_utils.random_rotate([processed_image, label], _PROB_OF_ROT, rotate_angle)

    return original_image, processed_image, label, original_label, prior_segs
示例#9
0
def preprocess_image_and_label(image,
                               label,
                               crop_height,
                               crop_width,
                               min_resize_value=None,
                               max_resize_value=None,
                               resize_factor=None,
                               min_scale_factor=1.,
                               max_scale_factor=1.,
                               scale_factor_step_size=0,
                               ignore_label=255,
                               is_training=True,
                               model_variant=None,
                               strong_weak=False,
                               output_valid=False):
    """Preprocesses the image and label.

  Args:
    image: Input image.
    label: Ground truth annotation label.
    crop_height: The height value used to crop the image and label.
    crop_width: The width value used to crop the image and label.
    min_resize_value: Desired size of the smaller image side.
    max_resize_value: Maximum allowed size of the larger image side.
    resize_factor: Resized dimensions are multiple of factor plus one.
    min_scale_factor: Minimum scale factor value.
    max_scale_factor: Maximum scale factor value.
    scale_factor_step_size: The step size from min scale factor to max scale
      factor. The input is randomly scaled based on the value of
      (min_scale_factor, max_scale_factor, scale_factor_step_size).
    ignore_label: The label value which will be ignored for training and
      evaluation.
    is_training: If the preprocessing is used for training or not.
    model_variant: Model variant (string) for choosing how to mean-subtract the
      images. See feature_extractor.network_map for supported model variants.
    strong_weak: Generate a pair of (strong, weak) augmented images for
      consistency. Also, need to get the valid region exluding padding.
    output_valid: Output valid region excluding padding or not.

  Returns:
    original_image: Original image (could be resized).
    processed_image: Preprocessed image.
    label: Preprocessed ground truth segmentation label.

  Raises:
    ValueError: Ground truth label not provided during training.
  """
    if is_training and label is None:
        raise ValueError('During training, label must be provided.')
    if model_variant is None:
        tf.logging.warning(
            'Default mean-subtraction is performed. Please specify '
            'a model_variant. See feature_extractor.network_map for '
            'supported model variants.')

    # Keep reference to original image.
    original_image = image

    processed_image = tf.cast(image, tf.float32)

    if label is not None:
        label = tf.cast(label, tf.int32)

    # Resize image and label to the desired range.
    if min_resize_value or max_resize_value:
        [processed_image,
         label] = (preprocess_utils.resize_to_range(image=processed_image,
                                                    label=label,
                                                    min_size=min_resize_value,
                                                    max_size=max_resize_value,
                                                    factor=resize_factor,
                                                    align_corners=True))
        # The `original_image` becomes the resized image.
        original_image = tf.identity(processed_image)

    # Data augmentation by randomly scaling the inputs.
    if is_training:
        scale = preprocess_utils.get_random_scale(min_scale_factor,
                                                  max_scale_factor,
                                                  scale_factor_step_size)
        processed_image, label = preprocess_utils.randomly_scale_image_and_label(
            processed_image, label, scale)
        processed_image.set_shape([None, None, 3])

    # Pad image and label to have dimensions >= [crop_height, crop_width]
    image_shape = tf.shape(processed_image)
    image_height = image_shape[0]
    image_width = image_shape[1]

    target_height = image_height + tf.maximum(crop_height - image_height, 0)
    target_width = image_width + tf.maximum(crop_width - image_width, 0)

    if strong_weak:
        # # Color distortion (operates in [0, 1])
        strong = processed_image / 255.
        strong = preprocess_utils.random_color_jitter(strong, _PROB_OF_JITTER)
        strong = strong * 255.

    # Pad image with mean pixel value.
    mean_pixel = tf.reshape(feature_extractor.mean_pixel(model_variant),
                            [1, 1, 3])
    processed_image = preprocess_utils.pad_to_bounding_box(
        processed_image, 0, 0, target_height, target_width, mean_pixel)
    if strong_weak:
        strong = preprocess_utils.pad_to_bounding_box(strong, 0, 0,
                                                      target_height,
                                                      target_width, mean_pixel)

    if label is not None:
        label = preprocess_utils.pad_to_bounding_box(label, 0, 0,
                                                     target_height,
                                                     target_width,
                                                     ignore_label)

    # Randomly crop the image and label.
    if is_training and label is not None:
        if not strong_weak:
            processed_image, label = preprocess_utils.random_crop(
                [processed_image, label], crop_height, crop_width)
        else:
            processed_image, label, strong = preprocess_utils.random_crop(
                [processed_image, label, strong], crop_height, crop_width)

    processed_image.set_shape([crop_height, crop_width, 3])

    if label is not None:
        label.set_shape([crop_height, crop_width, 1])

    if not is_training and output_valid:
        # Construct the valid mask excluding the boundary padding
        xs, ys = tf.meshgrid(tf.range(0, crop_width), tf.range(0, crop_height))
        valid_x = tf.cast(tf.less(xs, image_width), tf.int32)
        valid_y = tf.cast(tf.less(ys, image_height), tf.int32)
        valid = tf.reshape(valid_x * valid_y, [crop_height, crop_width, 1])

    if is_training:
        if strong_weak or output_valid:
            # Construct the valid mask excluding the boundary padding
            xs, ys = tf.meshgrid(tf.range(0, crop_width),
                                 tf.range(0, crop_height))
            valid_x = tf.cast(tf.less(xs, image_width), tf.int32)
            valid_y = tf.cast(tf.less(ys, image_height), tf.int32)
            valid = tf.reshape(valid_x * valid_y, [crop_height, crop_width, 1])

        if strong_weak:
            # Ignore CutOut region
            strong, label, valid = preprocess_utils.cutout_with_mask(
                strong,
                label,
                pad_size=50,
                mean_pixel=mean_pixel,
                ignore_label=ignore_label,
                valid=valid)

            # Randomly left-right flip the image and label.
            processed_image, strong, valid, label, _ = preprocess_utils.flip_dim(
                [processed_image, strong, valid, label], _PROB_OF_FLIP, dim=1)

            return original_image, processed_image, label, strong, valid

        # Randomly left-right flip the image and label.
        if not output_valid:
            processed_image, label, _ = preprocess_utils.flip_dim(
                [processed_image, label], _PROB_OF_FLIP, dim=1)
        else:
            processed_image, valid, label, _ = preprocess_utils.flip_dim(
                [processed_image, valid, label], _PROB_OF_FLIP, dim=1)

    if not output_valid:
        return original_image, processed_image, label
    else:
        return original_image, processed_image, label, valid