class JsbsimGymEnvironmentWrapper(gym.Env): """Custom Environment that follows gym interface""" metadata = {'render.modes': ['human']} def __init__(self, configuration_file: str = config.DEFAULT_CONFIGURATION_FILE): super(JsbsimGymEnvironmentWrapper, self).__init__() self.configuration = toml.load(os.path.expanduser(configuration_file)) self.sim = Simulation(configuration_file=configuration_file) self._dimensions = 1 self.action_space = spaces.Box(low=-0, high=1, shape=(self._dimensions, ), dtype=np.float32) self.observation_space = spaces.Box( low=np.inf, high=np.inf, shape=self._getObs(). shape, # Passt sich damit automatisch an die Beobachtung an dtype=np.float32) self.sim_steps = self.configuration['simulation'][ 'agent_interaction_freq'] def reset(self): self.sim.reset_with_initial_condition() observation = self._getObs() reward = self._calcRewards(observation) return observation, reward, self._calcDones(), {} def step( self, actions: List[np.ndarray] ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Dict]: self.sim.set_properties('fcs/throttle-cmd-norm', actions[0]) for _ in range(self.sim_steps): self.sim.run() observation = self._getObs() reward = self._calcRewards(observation) return observation, reward, self._calcDones(), {} def _getObs(self) -> np.ndarray: state = self.sim.get_state() return np.array(list(state.values())) def _calcRewards(self, observation) -> np.ndarray: rewAgent0 = 0 return np.array([rewAgent0], dtype=np.float32) def _calcDones(self) -> np.ndarray: dones = np.zeros(1) return dones def render(self, mode='human'): pass def close(self): pass def seed(self, seed=None) -> None: pass
class Episode(object): def __init__(self, machine_configs, task_configs, algorithm, event_file): self.env = simpy.Environment() cluster = Cluster() cluster.add_machines(machine_configs) task_broker = Broker(self.env, task_configs) scheduler = Scheduler(self.env, algorithm) self.simulation = Simulation(self.env, cluster, task_broker, scheduler, event_file) def run(self): self.simulation.run() self.env.run()
("index", "$index"), ("Wert", "$y")] p = figure(title="simple line example", x_axis_label='Datapoints', y_axis_label='Data', tooltips=TOOLTIPS) p.line(df['phi'].index.values, df['phi'], line_width=2, legend_label='phi', name='phi', color="red") p.line(df['theta'].index.values, df['theta'], line_width=2, legend_label='theta', name='theta', color="green") p.line(df['u'].index.values, df['u'], line_width=2, legend_label='u', name='u', color="blue") output_file("plot.html") save(p) sim = Simulation() result = sim.run() sim.set_properties('propulsion/engine/set-running', 1) sim.set_properties('fcs/throttle-cmd-norm', 1.0) i = 0 state = "" before = datetime.now() while result and sim.jsbsim.get_sim_time() <= 50: #print(i) state = sim.get_state() if i%5==0: sim.set_properties('fcs/aileron-cmd-norm', pid.innerLoopAileron(np.deg2rad(5), state['phi'], state['p'], sim.jsbsim.get_property_value( 'fcs/aileron-cmd-norm'))) sim.set_properties('fcs/elevator-cmd-norm', pid.innerLoopElevator(np.deg2rad(-10), state['theta'], state['q'], sim.jsbsim.get_property_value( 'fcs/elevator-cmd-norm')))