示例#1
0
文件: main.py 项目: sila0/stargan-v2
def main(args):
    print(args)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)

    solver = Solver(args)

    if args.mode == 'train':
        assert len(subdirs(args.train_img_dir)) == args.num_domains
        assert len(subdirs(args.val_img_dir)) == args.num_domains

        loaders = Munch(src=get_train_loader(root=args.train_img_dir,
                                             which='source',
                                             img_size=args.img_size,
                                             batch_size=args.batch_size,
                                             prob=args.randcrop_prob,
                                             num_workers=args.num_workers),
                        ref=get_train_loader(root=args.train_img_dir,
                                             which='reference',
                                             img_size=args.img_size,
                                             batch_size=args.batch_size,
                                             prob=args.randcrop_prob,
                                             num_workers=args.num_workers),
                        val=get_test_loader(root=args.val_img_dir,
                                            img_size=args.img_size,
                                            batch_size=args.val_batch_size,
                                            shuffle=True,
                                            num_workers=args.num_workers))
        solver.train(loaders)
    elif args.mode == 'test':
        solver.test()
    elif args.mode == 'sample':
        assert len(subdirs(args.src_dir)) == args.num_domains
        assert len(subdirs(args.ref_dir)) == args.num_domains
        loaders = Munch(src=get_test_loader(root=args.src_dir,
                                            img_size=args.img_size,
                                            batch_size=args.val_batch_size,
                                            shuffle=False,
                                            num_workers=args.num_workers),
                        ref=get_test_loader(root=args.ref_dir,
                                            img_size=args.img_size,
                                            batch_size=args.val_batch_size,
                                            shuffle=False,
                                            num_workers=args.num_workers))
        solver.sample(loaders)
    elif args.mode == 'eval':
        solver.evaluate()
    elif args.mode == 'align':
        from core.wing import align_faces
        align_faces(args, args.inp_dir, args.out_dir)
    else:
        raise NotImplementedError
示例#2
0
def main(config):
    # For fast training.
    cudnn.benchmark = True

    # Create directories if not exist.
    if not os.path.exists(config.log_dir):
        os.makedirs(config.log_dir)
    if not os.path.exists(config.model_save_dir):
        os.makedirs(config.model_save_dir)
    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)
    if not os.path.exists(config.result_dir):
        os.makedirs(config.result_dir)

    # Data loader.
    celeba_loader = None
    rafd_loader = None

    if config.dataset in ['CelebA', 'Both']:
        celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs,
                                   config.celeba_crop_size, config.image_size, config.batch_size,
                                   'CelebA', config.mode, config.num_workers)
    if config.dataset in ['RaFD', 'Both']:
        rafd_loader = get_loader(config.rafd_image_dir, None, None,
                                 config.rafd_crop_size, config.image_size, config.batch_size,
                                 'RaFD', config.mode, config.num_workers)
    

    # Solver for training and testing StarGAN.
    solver = Solver(celeba_loader, rafd_loader, config)

    if config.mode == 'train':
        if config.dataset in ['CelebA', 'RaFD']:
            solver.train()
        elif config.dataset in ['Both']:
            solver.train_multi()
    elif config.mode == 'test':
        if config.dataset in ['CelebA', 'RaFD']:
            solver.test()
        elif config.dataset in ['Both']:
            solver.test_multi()