示例#1
0
def test_net(prefix,
             epoch,
             batch_size,
             ctx,
             thresh=[0.6, 0.6, 0.7],
             min_face_size=24,
             stride=4,
             slide_window=False):

    detectors = [None, None, None]

    # load pnet model
    args, auxs = load_param(prefix[0], epoch[0], convert=True, ctx=ctx)
    if slide_window:
        PNet = Detector(P_Net20("test"), 20, batch_size[0], ctx, args, auxs)
    else:
        PNet = FcnDetector(P_Net20("test"), ctx, args, auxs)
    detectors[0] = PNet

    # load rnet model
    args, auxs = load_param(prefix[1], epoch[1], convert=True, ctx=ctx)
    RNet = Detector(R_Net("test"), 24, batch_size[1], ctx, args, auxs)
    detectors[1] = RNet

    # load onet model
    args, auxs = load_param(prefix[2], epoch[2], convert=True, ctx=ctx)
    ONet = Detector(O_Net("test"), 48, batch_size[2], ctx, args, auxs)
    detectors[2] = ONet

    mtcnn_detector = MtcnnDetector(detectors=detectors,
                                   ctx=ctx,
                                   min_face_size=min_face_size,
                                   stride=stride,
                                   threshold=thresh,
                                   slide_window=slide_window)

    img = cv2.imread('test01.jpg')
    t1 = time.time()

    boxes, boxes_c = mtcnn_detector.detect_pnet20(img)
    boxes, boxes_c = mtcnn_detector.detect_rnet(img, boxes_c)
    boxes, boxes_c = mtcnn_detector.detect_onet(img, boxes_c)

    print 'time: ', time.time() - t1

    if boxes_c is not None:
        draw = img.copy()
        font = cv2.FONT_HERSHEY_SIMPLEX
        for b in boxes_c:
            cv2.rectangle(draw, (int(b[0]), int(b[1])), (int(b[2]), int(b[3])),
                          (0, 255, 255), 1)
            cv2.putText(draw, '%.3f' % b[4], (int(b[0]), int(b[1])), font, 0.4,
                        (255, 255, 255), 1)

        cv2.imshow("detection result", draw)
        cv2.waitKey(0)
示例#2
0
def creat_mtcnn_detector(prefix, epoch, batch_size, test_mode, thresh,
                         min_face_size, ctx):
    detectors = [None, None, None]
    # load pnet model
    args, auxs = load_param(prefix[0], epoch[0], convert=True, ctx=ctx)
    PNet = FcnDetector(P_Net20("test"), ctx, args, auxs)
    detectors[0] = PNet

    # load rnet model
    if test_mode in ["onet", "hardrnet", "hardonet"]:
        args, auxs = load_param(prefix[1], epoch[1], convert=True, ctx=ctx)
        RNet = Detector(R_Net("test"), 24, batch_size[1], ctx, args, auxs)
        detectors[1] = RNet

    # load onet model
    if test_mode == "hardonet":
        args, auxs = load_param(prefix[2], epoch[2], convert=True, ctx=ctx)
        ONet = Detector(O_Net("test", False), 48, batch_size[2], ctx, args,
                        auxs)
        detectors[2] = ONet

    mtcnn_detector = MtcnnDetector(detectors=detectors,
                                   ctx=ctx,
                                   min_face_size=min_face_size,
                                   stride=4,
                                   threshold=thresh,
                                   slide_window=False)
    return mtcnn_detector
示例#3
0
def train_P_net20(image_set, root_path, dataset_path, prefix, ctx, pretrained,
                  epoch, begin_epoch, end_epoch, batch_size, thread_num,
                  frequent, lr, lr_epoch, resume):
    imdb = IMDB("mtcnn", image_set, root_path, dataset_path, 'train')
    gt_imdb = imdb.get_annotations()
    sym = P_Net20()

    train_net(sym, prefix, ctx, pretrained, epoch, begin_epoch, end_epoch,
              gt_imdb, batch_size, thread_num, 20, True, True, False, frequent,
              not resume, lr, lr_epoch)
示例#4
0
def train_P_net20(image_set, root_path, dataset_path, prefix, ctx, pretrained,
                  epoch, begin_epoch, end_epoch, batch_size, thread_num,
                  frequent, lr, lr_epoch, resume):
    imdb = IMDB("mtcnn", image_set, root_path, dataset_path)
    gt_imdb = imdb.gt_imdb()
    gt_imdb = imdb.append_flipped_images(gt_imdb)
    sym = P_Net20()

    train_net(sym, prefix, ctx, pretrained, epoch, begin_epoch, end_epoch,
              gt_imdb, batch_size, thread_num, 20, frequent, not resume, lr,
              lr_epoch)
示例#5
0
def test_net(root_path, dataset_path, prefix, epoch,
             batch_size, ctx, test_mode="onet",
             thresh=[0.6, 0.6, 0.7], min_face_size=24,
             stride=4, slide_window=False, shuffle=False, vis=False):

    detectors = [None, None, None]

    # load pnet model
    args, auxs = load_param(prefix[0], epoch[0], convert=True, ctx=ctx)
    if slide_window:
        PNet = Detector(P_Net20("test"), 20, batch_size[0], ctx, args, auxs)
    else:
        PNet = FcnDetector(P_Net20("test"), ctx, args, auxs)
    detectors[0] = PNet

    # load rnet model
    if test_mode in ["rnet", "onet"]:
        args, auxs = load_param(prefix[1], epoch[0], convert=True, ctx=ctx)
        RNet = Detector(R_Net("test"), 24, batch_size[1], ctx, args, auxs)
        detectors[1] = RNet

    # load onet model
    if test_mode == "onet":
        args, auxs = load_param(prefix[2], epoch[2], convert=True, ctx=ctx)
        ONet = Detector(O_Net("test"), 48, batch_size[2], ctx, args, auxs)
        detectors[2] = ONet

    mtcnn_detector = MtcnnDetector(detectors=detectors, ctx=ctx, min_face_size=min_face_size,
                                   stride=stride, threshold=thresh, slide_window=slide_window)

    for i in range(1,11):
        image_set = "fold-" + str(i).zfill(2)
        imdb = IMDB("fddb", image_set, root_path, dataset_path, 'test')
        gt_imdb = imdb.gt_imdb()

        test_data = TestLoader(gt_imdb)
        all_boxes = mtcnn_detector.detect_face(imdb, test_data, vis=vis)
        imdb.write_results(all_boxes)
示例#6
0
def test_net(root_path,
             dataset_path,
             image_set,
             prefix,
             epoch,
             batch_size,
             ctx,
             test_mode="hardpnet20",
             thresh=[0.6, 0.6, 0.7],
             min_face_size=24,
             stride=4,
             slide_window=False,
             shuffle=False,
             vis=False):

    detectors = [None, None, None]

    # load pnet model
    args, auxs = load_param(prefix[0], epoch[0], convert=True, ctx=ctx)
    if slide_window:
        PNet = Detector(P_Net20("test"), 20, batch_size[0], ctx, args, auxs)
    else:
        PNet = FcnDetector(P_Net20("test"), ctx, args, auxs)
    detectors[0] = PNet

    # load rnet model
    if test_mode in ["rnet", "onet"]:
        args, auxs = load_param(prefix[1], epoch[0], convert=True, ctx=ctx)
        RNet = Detector(R_Net("test"), 24, batch_size[1], ctx, args, auxs)
        detectors[1] = RNet

    # load onet model
    if test_mode == "onet":
        args, auxs = load_param(prefix[2], epoch[2], convert=True, ctx=ctx)
        ONet = Detector(O_Net("test"), 48, batch_size[2], ctx, args, auxs)
        detectors[2] = ONet

    mtcnn_detector = MtcnnDetector(detectors=detectors,
                                   ctx=ctx,
                                   min_face_size=min_face_size,
                                   stride=stride,
                                   threshold=thresh,
                                   slide_window=slide_window)

    imdb = IMDB("wider", image_set, root_path, dataset_path, 'test')
    gt_imdb = imdb.gt_imdb()

    test_data = TestLoader(gt_imdb)
    detections = mtcnn_detector.detect_face(imdb, test_data, vis=vis)

    if test_mode == "hardpnet20":
        net = "pnet20"
    if test_mode == "hardrnet":
        net = "rnet"
    elif test_mode == "hardonet":
        net = "onet"

    save_path = "%s/prepare_data/%s" % (config.root, net)
    if not os.path.exists(save_path):
        os.mkdir(save_path)
    save_file = os.path.join(save_path, "detections.pkl")
    with open(save_file, 'wb') as f:
        cPickle.dump(detections, f, cPickle.HIGHEST_PROTOCOL)

    save_hard_example(net)