示例#1
0
    def test_train_save_load_predict(self):

        print "test train, save, load and predict..."

        xs = SklearnRandomForestTrainTestModel.get_xs_from_results(
            self.features)
        ys = SklearnRandomForestTrainTestModel.get_ys_from_results(
            self.features)
        xys = SklearnRandomForestTrainTestModel.get_xys_from_results(
            self.features)

        self.model = SklearnRandomForestTrainTestModel(
            {
                'norm_type': 'normalize',
                'random_state': 0
            }, None)
        self.model.train(xys)

        self.model.to_file(self.model_filename)
        self.assertTrue(os.path.exists(self.model_filename))

        loaded_model = SklearnRandomForestTrainTestModel.from_file(
            self.model_filename, None)

        result = loaded_model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.17634739353518517, places=4)
示例#2
0
    def test_train_save_load_predict(self):

        print "test train, save, load and predict..."

        xs = SklearnRandomForestTrainTestModel.get_xs_from_results(self.features)
        ys = SklearnRandomForestTrainTestModel.get_ys_from_results(self.features)
        xys = SklearnRandomForestTrainTestModel.get_xys_from_results(self.features)

        self.model = SklearnRandomForestTrainTestModel({'norm_type':'normalize', 'random_state':0}, None)
        self.model.train(xys)

        self.model.to_file(self.model_filename)
        self.assertTrue(os.path.exists(self.model_filename))

        loaded_model = SklearnRandomForestTrainTestModel.from_file(self.model_filename, None)

        result = loaded_model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.17634739353518517, places=4)
示例#3
0
    def test_train_predict_randomforest(self):

        print "test random forest train and predict..."

        # random forest don't need proper data normalization

        xs = SklearnRandomForestTrainTestModel.get_xs_from_results(
            self.features, [0, 1, 2])
        ys = SklearnRandomForestTrainTestModel.get_ys_from_results(
            self.features, [0, 1, 2])
        xys = SklearnRandomForestTrainTestModel.get_xys_from_results(
            self.features, [0, 1, 2])

        model = SklearnRandomForestTrainTestModel(
            {
                'norm_type': 'normalize',
                'random_state': 0
            }, None)
        model.train(xys)
        result = model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.051804171170643766, places=4)

        model = SklearnRandomForestTrainTestModel(
            {
                'norm_type': 'clip_0to1',
                'random_state': 0
            }, None)
        model.train(xys)
        result = model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.051804171170643752, places=4)

        model = SklearnRandomForestTrainTestModel(
            {
                'norm_type': 'custom_clip_0to1',
                'custom_clip_0to1_map': {
                    'Moment_noref_feature_1st_score': [0.0, 100.0],
                },
                'random_state': 0
            }, None)
        model.train(xys)
        result = model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.051804171170643752, places=4)

        model = SklearnRandomForestTrainTestModel(
            {
                'norm_type': 'clip_minus1to1',
                'random_state': 0
            }, None)
        model.train(xys)
        result = model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.051804171170643752, places=4)

        model = SklearnRandomForestTrainTestModel(
            {
                'norm_type': 'none',
                'random_state': 0
            }, None)
        model.train(xys)
        result = model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.051804171170643752, places=4)
示例#4
0
    def test_train_predict_randomforest(self):

        print "test random forest train and predict..."

        # random forest don't need proper data normalization

        xs = SklearnRandomForestTrainTestModel.get_xs_from_results(self.features, [0, 1, 2])
        ys = SklearnRandomForestTrainTestModel.get_ys_from_results(self.features, [0, 1, 2])
        xys = SklearnRandomForestTrainTestModel.get_xys_from_results(self.features, [0, 1, 2])

        model = SklearnRandomForestTrainTestModel({'norm_type':'normalize',
                                            'random_state': 0}, None)
        model.train(xys)
        result = model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.051804171170643766, places=4)

        model = SklearnRandomForestTrainTestModel({'norm_type':'clip_0to1',
                                'random_state': 0}, None)
        model.train(xys)
        result = model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.051804171170643752, places=4)

        model = SklearnRandomForestTrainTestModel(
            {'norm_type': 'custom_clip_0to1',
             'custom_clip_0to1_map': {
                'Moment_noref_feature_1st_score': [0.0, 100.0],
              },
             'random_state': 0
             }, None)
        model.train(xys)
        result = model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.051804171170643752, places=4)

        model = SklearnRandomForestTrainTestModel({'norm_type':'clip_minus1to1',
                                'random_state': 0}, None)
        model.train(xys)
        result = model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.051804171170643752, places=4)

        model = SklearnRandomForestTrainTestModel({'norm_type':'none', 'random_state': 0}, None)
        model.train(xys)
        result = model.evaluate(xs, ys)
        self.assertAlmostEquals(result['RMSE'], 0.051804171170643752, places=4)