示例#1
0
def main(args):
    # initialize workspace
    split_file, experiment_directory, experiment_directory_color = init_info(args.class_name)
    instance_num = args.instance_id

    # manually set a initial camera intrinsic parameters
    img_h, img_w = 137, 137
    intrinsic = np.array([[150., 0., 68.5], [0., 150., 68.5], [0., 0., 1.]])

    # load codes
    shape_code_fname = os.path.join(experiment_directory, 'LatentCodes', '{}.pth'.format(args.checkpoint))
    shape_code = torch.load(shape_code_fname)['latent_codes'][instance_num].detach().cpu()
    color_code_fname = os.path.join(experiment_directory, 'Color', 'LatentCodes', '{}.pth'.format(args.checkpoint_color))
    color_code = torch.load(color_code_fname)['latent_codes'][instance_num].detach().cpu()
    shape_code = shape_code.float().cuda()
    color_code = color_code.float().cuda()

    # load decoders
    decoder = load_decoder(experiment_directory, args.checkpoint)
    decoder = decoder.module.cuda()

    decoder_color = load_decoder(experiment_directory, args.checkpoint_color, color_size=args.color_size, experiment_directory_color=experiment_directory_color)
    decoder_color = decoder_color.module.cuda()

    # generate camera views
    img_hw = (img_h, img_w)
    print('Image size: {0}.'. format(img_hw))

    # [Note] To render high-quality consistent visualization, we set ray marching ratio back to 1.0 here. If speed up is needed, aggressive strategy can still be used.
    output_shape = args.resolution
    sdf_renderer = SDFRenderer(decoder, decoder_color, resize_intrinsic(intrinsic, output_shape / img_h), march_step=100, buffer_size=1, threshold=args.threshold, ray_marching_ratio=1.0)
    camera_list = generate_camera_list(sdf_renderer)

    # visualization settings
    dist_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..')
    prefix = os.path.join(dist_path, args.vis_folder, '{0}_{1}'.format(args.class_name, instance_num), 'vis')

    basedir = os.path.dirname(prefix)
    if not os.path.exists(basedir):
        os.makedirs(basedir)
    else:
        import shutil
        shutil.rmtree(basedir)
        os.makedirs(basedir)
    for idx, camera in enumerate(tqdm(camera_list)):
        prefix_idx = prefix + '_{0:04d}'.format(idx)
        demo_color_save_render_output(prefix_idx, sdf_renderer, shape_code, color_code, camera)
示例#2
0
def train(args):
    # initialize output_dir
    if not os.path.exists(args.vis_folder):
        os.makedirs(args.vis_folder)

    #########################################################################
    # load data
    #########################################################################
    mesh_data_dir, experiment_directory, split_file, synthetic_data_dir = init_info(
    )
    upper_loader = LoaderSingle(synthetic_data_dir, mesh_data_dir,
                                experiment_directory, split_file)
    shape_md5, image_data, mesh_data, camera, depth = upper_loader[6]
    img, _, normal, _ = image_data
    gt_samples, norm_params = mesh_data

    points_gt = np.array(gt_samples.vertices)
    points_gt = (points_gt + norm_params['offset']) * norm_params['scale']

    gt_pack = {}
    gt_pack['depth'] = torch.from_numpy(depth).cuda()
    gt_pack['normal'] = torch.from_numpy(normal).cuda()
    gt_pack['silhouette'] = torch.from_numpy(depth < 1e5).type(
        torch.uint8).cuda()

    # # visualize gt
    # cv2.imwrite('img.png', img)
    # visualize_depth('test0.png', depth)
    # with open('camera.pkl', 'wb') as f:
    #     pickle.dump(camera, f)

    #########################################################################
    # initialize tensor
    #########################################################################
    decoder = load_decoder(experiment_directory, args.checkpoint)
    decoder = decoder.module.cuda()
    evaluator = Evaluator(decoder)
    latent_size = 256
    std_ = 0.1
    rand_tensor = torch.ones(1, latent_size).normal_(mean=0, std=std_)
    if args.use_random_init:
        latent_tensor = rand_tensor
    else:
        latent_code_dir = os.path.join(synthetic_data_dir, 'latent_codes',
                                       '{0}.pth'.format(shape_md5))
        latent_code = torch.load(latent_code_dir)
        latent_tensor = latent_code[0].detach().cpu()
        latent_size = latent_tensor.shape[-1]
        if not args.use_gt_code:
            latent_tensor = latent_tensor + rand_tensor
    latent_tensor = latent_tensor.float().cuda()
    if (not args.profile) and (not args.no_pretest):
        points_tmp = evaluator.latent_vec_to_points(latent_tensor,
                                                    fname=os.path.join(
                                                        args.vis_folder,
                                                        'initial.ply'),
                                                    silent=True)
        if points_tmp is None:
            print(
                'The current latent code does not correspond to a valid shape.'
            )
            dist = None
        else:
            dist = evaluator.compute_chamfer_distance(points_gt, points_tmp)
            print('STD: {0:.3f}'.format(std_))
            print('CHAMFER DISTANCE: {0:.3f}'.format(dist * 1000))
    latent_tensor.requires_grad = True
    optimizer_latent = torch.optim.Adam([latent_tensor], lr=args.lr)

    #########################################################################
    # optimization
    #########################################################################
    weight_dict = {}
    weight_dict['w_depth'] = 10.0
    weight_dict['w_normal'] = 5.0
    weight_dict['w_mask_gt'] = 1.0
    weight_dict['w_mask_out'] = 1.0
    weight_dict['w_l2reg'] = 1.0

    img_h, img_w = img.shape[0], img.shape[1]
    img_hw = (img_h, img_w)
    print('Image size: {0}.'.format(img_hw))
    if args.visualize:
        visualizer = Visualizer(img_hw)
        visualizer.add_chamfer(dist)
    else:
        visualizer = None

    # initialize renderer
    if args.use_multiscale:
        sdf_renderer = SDFRenderer(decoder,
                                   camera.intrinsic,
                                   img_hw=img_hw,
                                   march_step=100,
                                   buffer_size=1,
                                   threshold=args.threshold,
                                   ray_marching_ratio=args.ratio,
                                   use_depth2normal=args.use_depth2normal)
        sdf_renderer_1_2 = SDFRenderer(decoder,
                                       downsize_camera_intrinsic(
                                           camera.intrinsic, 2),
                                       march_step=100,
                                       buffer_size=3,
                                       threshold=args.threshold,
                                       use_depth2normal=args.use_depth2normal)
        sdf_renderer_1_4 = SDFRenderer(decoder,
                                       downsize_camera_intrinsic(
                                           camera.intrinsic, 4),
                                       march_step=100,
                                       buffer_size=5,
                                       threshold=args.threshold,
                                       use_depth2normal=args.use_depth2normal)
        renderer_list = [sdf_renderer, sdf_renderer_1_2, sdf_renderer_1_4]
    else:
        sdf_renderer = SDFRenderer(decoder,
                                   camera.intrinsic,
                                   img_hw=img_hw,
                                   march_step=100,
                                   buffer_size=args.buffer_size,
                                   threshold=args.threshold,
                                   ray_marching_ratio=args.ratio,
                                   use_depth2normal=args.use_depth2normal)
        renderer_list = [sdf_renderer]

    extrinsic = torch.from_numpy(camera.extrinsic).float().cuda()
    if args.oracle:
        num_iters = 1
    else:
        num_iters = args.num_iters

    # optimization start
    latent_tensor, optimizer_latent = optimize_single_view(
        renderer_list,
        evaluator,
        optimizer_latent,
        latent_tensor,
        extrinsic,
        gt_pack,
        weight_dict,
        optimizer_type="shape",
        num_iters=num_iters,
        points_gt=points_gt,
        test_step=args.test_step,
        profile=args.profile,
        visualizer=visualizer,
        ray_marching_type=args.method,
        vis_folder=args.vis_folder)
示例#3
0
def main():
    import torch.multiprocessing as mp
    torch.autograd.set_detect_anomaly(True)

    mp.set_start_method('spawn')
    import argparse
    arg_parser = argparse.ArgumentParser(
        description="Color training pipeline."
    )
    arg_parser.add_argument('-g', '--gpu', default='0', help='gpu id.')
    arg_parser.add_argument("--checkpoint", "-c", dest="checkpoint", default="2000",
        help='The checkpoint weights to use. This can be a number indicated an epoch or "latest" '
        + "for the latest weights (this is the default)",
    )
    arg_parser.add_argument('--test_step', '-t', type=int, default=1, help='test step.')
    arg_parser.add_argument('--data_path', default='data/demo_multiview_real/', help='path to the dataset.') #TODO need to change the default
    arg_parser.add_argument('--obj_name', default='chairs', help='deepsdf class model for experiments. (currently only support "chairs" ')
    arg_parser.add_argument('--visualize', action='store_true', help='visualization flag.')
    arg_parser.add_argument('--scale', type=float, default=0.2, help='scale the size of input image.')
    

    args = arg_parser.parse_args()
    os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)

    ################################
    num_views_per_round = 6
    num_epoch = 5
    sep_dist = 1
    refine_sim = True
    ini_mean_shape = False
    ################################

    # load data
    exp_dir = os.path.join('deepsdf/experiments/', args.obj_name)
    out_dir = 'vis/demo_multiview_real'

    
    upper_loader = LoaderMultiReal(args.data_path, scale=args.scale, refine_sim=refine_sim)

    for instance_num in range(len(upper_loader)):
        # load data
        instance_name, imgs, _, cameras, sim_mtrx_ini = upper_loader[instance_num]

        vis_dir = os.path.join(out_dir, '{}'.format(instance_num))
        os.makedirs(vis_dir, exist_ok=True)
        total_num_img = len(imgs)

        # RANDOMLY initialize shape code
        latent_size = 256
        std_ = 0.1
        if ini_mean_shape:
            shape_code = torch.zeros(1, latent_size)
        else:
            shape_code = torch.ones(1, latent_size).normal_(mean=0, std=std_)

        shape_code = shape_code.float().cuda()
        shape_code.requires_grad = True

        if refine_sim:
            sim3 = easydict.EasyDict({
                "scale": torch.tensor(0.,requires_grad=True, device="cuda"),
                "rot": torch.tensor([0.,0.,0.],requires_grad=True, device="cuda"),
                "trans": torch.tensor([0.,0.,0.],requires_grad=True, device="cuda"),
            })
            optim_list = [{ "params": [v for k,v in sim3.items()], "lr": LR },
                          { "params": [shape_code], "lr": LR }]
            optimizer_latent = torch.optim.Adam(optim_list)
        else:
            optimizer_latent = torch.optim.Adam([shape_code] , lr=LR)
            sim3 = None

        decoder = load_decoder(exp_dir, args.checkpoint)
        decoder = decoder.module.cuda()
        img_h, img_w = imgs[0].shape[0], imgs[0].shape[1]
        img_hw = (img_h, img_w)
        print('Image size: {0}.'. format(img_hw))
        sdf_renderer = SDFRenderer_warp(decoder, cameras[0].intrinsic, march_step=200, buffer_size=1, threshold=THRESHOLD, transform_matrix=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]))
        evaluator = Evaluator(decoder)
        visualizer = Visualizer(img_hw)

        weight_list = {}
        weight_list['color'] = 5.0
        weight_list['l2reg'] = 1.0

        shape_code, optimizer_latent = optimize_multi_view(sdf_renderer, evaluator, shape_code, optimizer_latent, imgs, cameras, weight_list, num_views_per_round=num_views_per_round, num_iters=num_epoch, sep_dist=sep_dist, test_step=args.test_step, visualizer=visualizer, points_gt=None, sim3=sim3, sim3_init=sim_mtrx_ini, vis_flag=args.visualize, vis_dir=vis_dir)
    print('Finished. check results {}'.format(out_dir))
示例#4
0
def train(args):
    # initialize output_dir
    if not os.path.exists(args.vis_folder):
        os.makedirs(args.vis_folder)

    #########################################################################
    # load data
    #########################################################################
    mesh_data_dir, experiment_directory, split_file, synthetic_data_dir = init_info(
    )
    upper_loader = LoaderSingle(synthetic_data_dir, mesh_data_dir,
                                experiment_directory, split_file)
    shape_md5, image_data, mesh_data, camera, depth = upper_loader[6]
    img, _, normal, _ = image_data
    gt_samples, norm_params = mesh_data

    points_gt = np.array(gt_samples.vertices)
    points_gt = (points_gt + norm_params['offset']) * norm_params['scale']

    gt_pack = {}
    gt_pack['depth'] = torch.from_numpy(depth).cuda()
    gt_pack['normal'] = torch.from_numpy(normal).cuda()
    gt_pack['silhouette'] = torch.from_numpy(depth < 1e5).type(
        torch.uint8).cuda()

    # # visualize gt
    # cv2.imwrite('img.png', img)
    # visualize_depth('test0.png', depth)
    # with open('camera.pkl', 'wb') as f:
    #     pickle.dump(camera, f)

    #########################################################################
    # prepare tensor
    #########################################################################
    decoder = load_decoder(experiment_directory, args.checkpoint)
    decoder = decoder.module.cuda()
    evaluator = Evaluator(decoder)
    latent_code_dir = os.path.join(synthetic_data_dir, 'latent_codes',
                                   '{0}.pth'.format(shape_md5))
    latent_code = torch.load(latent_code_dir)
    latent_tensor = latent_code[0].detach().cpu()
    latent_size = latent_code.shape[-1]
    latent_tensor = latent_tensor.float().cuda()
    latent_tensor.requires_grad = False

    K, RT = camera.intrinsic, camera.extrinsic
    camera_tensor = get_tensor_from_camera(RT)
    std_cam = 1e-1
    if args.use_gt_camera:
        camera_tensor = camera_tensor
    else:
        camera_tensor = camera_tensor + torch.ones(
            camera_tensor.shape[0]).normal_(mean=0, std=std_cam)
    from torch.autograd import Variable
    camera_tensor = Variable(camera_tensor.cuda(), requires_grad=True)
    optimizer_camera = torch.optim.Adam([camera_tensor], lr=args.lr)

    #########################################################################
    # optimization
    #########################################################################
    weight_dict = {}
    weight_dict['w_depth'] = 10.0
    weight_dict['w_normal'] = 10.0
    weight_dict['w_mask_gt'] = 1.0
    weight_dict['w_mask_out'] = 1.0
    weight_dict['w_l2reg'] = 1.0

    img_h, img_w = img.shape[0], img.shape[1]
    img_hw = (img_h, img_w)
    print('Image size: {0}.'.format(img_hw))
    if args.visualize:
        visualizer = Visualizer(img_hw)
    else:
        visualizer = None

    # initialize renderer
    sdf_renderer = SDFRenderer(decoder,
                               camera.intrinsic,
                               img_hw=img_hw,
                               march_step=100,
                               buffer_size=3,
                               threshold=args.threshold,
                               ray_marching_ratio=args.ratio,
                               use_depth2normal=args.use_depth2normal)
    renderer_list = [sdf_renderer]

    if args.oracle:
        num_iters = 1
    else:
        num_iters = args.num_iters

    # optimization start
    camera_tensor, optimizer_latent = optimize_single_view(
        renderer_list,
        evaluator,
        optimizer_camera,
        latent_tensor,
        camera_tensor,
        gt_pack,
        weight_dict,
        optimizer_type="camera",
        num_iters=num_iters,
        points_gt=points_gt,
        test_step=args.test_step,
        profile=args.profile,
        visualizer=visualizer,
        ray_marching_type=args.method,
        vis_folder=args.vis_folder)
示例#5
0
def main():
    import torch.multiprocessing as mp
    mp.set_start_method('spawn')
    import argparse
    arg_parser = argparse.ArgumentParser(
        description="Color training pipeline.")
    arg_parser.add_argument('-g', '--gpu', default='0', help='gpu id.')
    arg_parser.add_argument(
        "--checkpoint",
        "-c",
        dest="checkpoint",
        default="2000",
        help=
        'The checkpoint weights to use. This can be a number indicated an epoch or "latest" '
        + "for the latest weights (this is the default)",
    )
    arg_parser.add_argument('--test_step',
                            '-t',
                            type=int,
                            default=5,
                            help='test step.')
    arg_parser.add_argument('--visualize',
                            action='store_true',
                            help='visualization flag.')
    arg_parser.add_argument('--data_path',
                            default='data/demo_multiview_syn/',
                            help='path to PMO dataset.')
    arg_parser.add_argument(
        '--obj_name',
        default='cars',
        help=
        'deepsdf class model for experiments. (support "planes", "chairs", "cars"'
    )
    arg_parser.add_argument(
        '--scale',
        type=float,
        default=0.5,
        help='scale the size of input image, 224x224 -> 112x112.')
    arg_parser.add_argument(
        '--focal',
        type=float,
        default=None,
        help='resize the image and change focal length, try 2')
    arg_parser.add_argument('--full',
                            action='store_true',
                            help='run over all PMO data, otherwise run demo')

    args = arg_parser.parse_args()
    os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)

    ################################
    num_sample_points = 10000
    num_views_per_round = 8
    ################################

    # load data
    ind = class_type.index(args.obj_name)
    class_id = class_ID[ind]
    exp_dir = os.path.join('deepsdf/experiments/', args.obj_name)

    upper_loader = LoaderMultiPMO(args.data_path,
                                  class_id,
                                  scale=args.scale,
                                  num_points=num_sample_points,
                                  focal=args.focal)
    if args.full:
        total_num_instance = 50  # consider 50 instances in total
        out_dir = os.path.join('vis/multiview_syn/', args.obj_name)
    else:
        total_num_instance = len(upper_loader)  # demo data
        out_dir = os.path.join('vis/demo_multiview_syn/', args.obj_name)

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    cf_dist1_total = 0.0
    cf_dist2_total = 0.0

    for instance_num in range(total_num_instance):
        vis_dir = os.path.join(out_dir, '{}'.format(instance_num))
        if not os.path.exists(vis_dir):
            os.makedirs(vis_dir)

        instance_name, imgs, masks, cameras, points_gt = upper_loader[
            instance_num]

        # RANDOMLY initialize shape code
        latent_size = 256
        std_ = 0.1
        shape_code = torch.ones(1, latent_size).normal_(mean=0, std=std_)
        shape_code = shape_code.float().cuda()
        shape_code.requires_grad = True

        decoder = load_decoder(exp_dir, args.checkpoint)
        decoder = decoder.module.cuda()
        optimizer_latent = torch.optim.Adam([shape_code], lr=LR)

        img_h, img_w = imgs[0].shape[0], imgs[0].shape[1]
        img_hw = (img_h, img_w)
        print('Image size: {0}.'.format(img_hw))
        sdf_renderer = SDFRenderer_warp(decoder,
                                        cameras[0].intrinsic,
                                        march_step=100,
                                        buffer_size=1,
                                        threshold=THRESHOLD)
        evaluator = Evaluator(decoder)
        visualizer = Visualizer(img_hw)

        weight_list = {}
        weight_list['color'] = 5.0
        weight_list['l2reg'] = 1.0

        shape_code, optimizer_latent = optimize_multi_view(
            sdf_renderer,
            evaluator,
            shape_code,
            optimizer_latent,
            imgs,
            cameras,
            weight_list,
            num_views_per_round=num_views_per_round,
            num_iters=20,
            num_sample_points=num_sample_points,
            visualizer=visualizer,
            points_gt=points_gt,
            vis_dir=vis_dir,
            vis_flag=args.visualize,
            full_flag=args.full)

        if args.full:
            # final evaluation
            points_tmp = evaluator.latent_vec_to_points(
                shape_code, num_points=num_sample_points, silent=True)
            dist1, dist2 = evaluator.compute_chamfer_distance(points_gt,
                                                              points_tmp,
                                                              separate=True)

            cf_dist1_total += dist1 * 1000
            cf_dist2_total += dist2 * 1000

    if args.full:
        print('Final Average Chamfer Loss: ',
              cf_dist1_total / total_num_instance,
              cf_dist2_total / total_num_instance)
    print('Finished. check results {}'.format(out_dir))