def demo(args): model = torch.nn.DataParallel(RAFT(args)) model.load_state_dict(torch.load(args.model, map_location=DEVICE)) model = model.module model.to(DEVICE) model.eval() model = torch.jit.script(model) with torch.no_grad(): images = glob.glob(os.path.join(args.path, '*.png')) + \ glob.glob(os.path.join(args.path, '*.jpg')) images = sorted(images) for imfile1, imfile2 in zip(images[:-1], images[1:]): image1 = load_image(imfile1) image2 = load_image(imfile2) padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1, image2) # export( # model, image1, image2, # torch.tensor([6], dtype=torch.int), # torch.Tensor([False]), # torch.Tensor([False]), # torch.tensor([False], dtype=torch.bool) # ) flow_low, flow_up = model(image1, image2, iters=1, test_mode=True) viz(image1, flow_up)
def run_pair_tensor(model, image1, image2, tresh, force, strength, smooth, intepolation): with torch.no_grad(): padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1, image2) flow_low, flow_up = model(image1, image2, iters=20, test_mode=True) image1 = padder.unpad(image1) flow_up = padder.unpad(flow_up) blurImage, normalizedFlow = MotionBlur(image1, flow_up, tresh, force, strength, smooth, intepolation) #return image1, blurImage, flow_up, normalizedFlow #img = image1[0].permute(1,2,0).cpu().numpy() blur = blurImage[0].permute(1, 2, 0).cpu().numpy() flo1 = flow_up[0].permute(1, 2, 0).cpu().numpy() flo2 = normalizedFlow.permute(1, 2, 0).cpu().numpy() flo1 = flow_viz.flow_to_image(flo1) flo2 = flow_viz.flow_to_image(flo2) del image1, image2, padder, flow_low, flow_up, blurImage, normalizedFlow return blur, flo1, flo2
def validate_VRKitti2(model, args, eval_loader, group, iters=24): """ Peform validation using the KITTI-2015 (train) split """ model.eval() epe_list = torch.zeros(2).cuda(device=args.gpu) out_list = torch.zeros(2).cuda(device=args.gpu) for val_id, batch in enumerate(tqdm(eval_loader)): image1, image2, flow_gt, valid_gt = batch image1 = Variable(image1, requires_grad=True) image1 = image1.cuda(args.gpu, non_blocking=True) image2 = Variable(image2, requires_grad=True) image2 = image2.cuda(args.gpu, non_blocking=True) flow_gt = Variable(flow_gt, requires_grad=True) flow_gt = flow_gt.cuda(args.gpu, non_blocking=True) flow_gt = flow_gt[0] valid_gt = Variable(valid_gt, requires_grad=True) valid_gt = valid_gt.cuda(args.gpu, non_blocking=True) valid_gt = valid_gt[0] padder = InputPadder(image1.shape, mode='kitti') image1, image2 = padder.pad(image1, image2) flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) flow = padder.unpad(flow_pr[0]) epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() mag = torch.sum(flow_gt**2, dim=0).sqrt() epe = epe.view(-1) mag = mag.view(-1) val = valid_gt.view(-1) >= 0.5 out = ((epe > 3.0) & ((epe / mag) > 0.05)).float() epe_list[0] += epe[val].mean().item() epe_list[1] += 1 out_list[0] += out[val].sum() out_list[1] += torch.sum(val) if args.distributed: dist.all_reduce(tensor=epe_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=out_list, op=dist.ReduceOp.SUM, group=group) if args.gpu == 0: epe = epe_list[0] / epe_list[1] f1 = 100 * out_list[0] / out_list[1] print("Validation KITTI: %f, %f" % (epe, f1)) return { 'kitti-epe': float(epe.detach().cpu().numpy()), 'kitti-f1': float(f1.detach().cpu().numpy()) } else: return None
def load_image_list(image_files, input_flow_w): images = [] for imfile in sorted(image_files): images.append(load_image(imfile, input_flow_w)) images = torch.stack(images, dim=0) images = images.to(DEVICE) padder = InputPadder(images.shape) return padder.pad(images)[0]
def validate_kitti_colorjitter(gpu, model, args, ngpus_per_node, eval_entries, iters=24): """ Peform validation using the KITTI-2015 (train) split """ interval = np.floor(len(eval_entries) / ngpus_per_node).astype(np.int).item() if gpu == ngpus_per_node - 1: stidx = int(interval * gpu) edidx = len(eval_entries) else: stidx = int(interval * gpu) edidx = int(interval * (gpu + 1)) print("Initialize Instance on Gpu %d, from %d to %d, total %d" % (gpu, stidx, edidx, len(eval_entries))) from tqdm import tqdm model.eval() model.cuda(gpu) with torch.no_grad(): for val_id, entry in enumerate(tqdm(remove_dup(eval_entries[stidx : edidx]))): seq, index = entry.split(' ') index = int(index) if os.path.exists(os.path.join(args.dataset, seq, 'image_02', 'data', "{}.png".format(str(index).zfill(10)))): tmproot = args.dataset else: tmproot = args.odom_root img1path = os.path.join(tmproot, seq, 'image_02', 'data', "{}.png".format(str(index).zfill(10))) img2path = os.path.join(tmproot, seq, 'image_02', 'data', "{}.png".format(str(index + 1).zfill(10))) if not os.path.exists(img2path): img2path = img1path image1 = frame_utils.read_gen(img1path) image2 = frame_utils.read_gen(img2path) image1 = np.array(image1).astype(np.uint8) image2 = np.array(image2).astype(np.uint8) image1 = torch.from_numpy(image1).permute([2, 0, 1]).float() image2 = torch.from_numpy(image2).permute([2, 0, 1]).float() svfold = os.path.join(args.exportroot, seq, 'image_02') svpath = os.path.join(args.exportroot, seq, 'image_02', "{}.png".format(str(index).zfill(10))) os.makedirs(svfold, exist_ok=True) image1 = image1[None].cuda(gpu) image2 = image2[None].cuda(gpu) padder = InputPadder(image1.shape, mode='kitti') image1, image2 = padder.pad(image1, image2) flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) flow = padder.unpad(flow_pr[0]).cpu() frame_utils.writeFlowKITTI(svpath, flow.permute(1, 2, 0).numpy()) # Image.fromarray(flow_viz.flow_to_image(flow.permute(1, 2, 0).numpy())).show() # tensor2rgb(image1 / 255.0, viewind=0).show() return
def RunImage(img1, img2): padder = InputPadder(img1.shape) image1, image2 = padder.pad(img1, img2) with torch.no_grad(): flow_low, flow_up = model(image1, image2, iters=20, test_mode=True) #print(flow_up.shape) #flow = model(image1, image2, iters=20, test_mode=False)[0] blurImage, normalizedFlow = MotionBlur(image1, flow_up) return image1, blurImage, flow_up, normalizedFlow viz(image1, withBlur, flow_up)
def demo(args): model = torch.nn.DataParallel(RAFT(args)) model.load_state_dict(torch.load(args.model)) model = model.module model.to(DEVICE) model.eval() with torch.no_grad(): images = glob.glob(os.path.join(args.path, '*.png')) + \ glob.glob(os.path.join(args.path, '*.jpg')) + \ glob.glob(os.path.join(args.path, '*.tiff')) images = sorted(images) for imfile1, imfile2 in zip(images[:-1], images[1:]): image1 = load_image(imfile1) image2 = load_image(imfile2) padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1, image2) t1 = time.perf_counter() flow_low, flow_up = model(image1, image2, iters=5, test_mode=True) t2 = time.perf_counter() print("Time: ", t2 - t1) ############ height, width = image1.shape[-2:] grid = geometry.create_meshgrid(height, width, normalized_coordinates=False).to( image1.device) print("SPODSAOPDA", flow_up.shape, grid.shape, grid.min(), grid.max()) grid = flow_up.permute(0, 2, 3, 1) + grid flow_up_norm = geometry.normalize_pixel_coordinates( grid, height, width) # BxHxWx2 image1_warped = F.grid_sample(image2, flow_up_norm, align_corners=True) view(image1_warped, 'img2_warped') view(image1, 'img2') viz(image1, flow_up)
def create_kitti_submission(model, iters=24, output_path='kitti_submission'): """ Create submission for the Sintel leaderboard """ model.eval() test_dataset = datasets.KITTI(split='testing', aug_params=None) if not os.path.exists(output_path): os.makedirs(output_path) for test_id in range(len(test_dataset)): image1, image2, (frame_id, ) = test_dataset[test_id] padder = InputPadder(image1.shape, mode='kitti') image1, image2 = padder.pad(image1[None].to(DEVICE), image2[None].to(DEVICE)) _, flow_pr = model(image1, image2, iters=iters, test_mode=True) flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() output_filename = os.path.join(output_path, frame_id) frame_utils.writeFlowKITTI(output_filename, flow)
def create_sintel_submission(model, iters=32, warm_start=False, output_path='sintel_submission'): """ Create submission for the Sintel leaderboard """ model.eval() for dstype in ['clean', 'final']: test_dataset = datasets.MpiSintel(split='test', aug_params=None, dstype=dstype) flow_prev, sequence_prev = None, None for test_id in range(len(test_dataset)): image1, image2, (sequence, frame) = test_dataset[test_id] if sequence != sequence_prev: flow_prev = None padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1[None].to(DEVICE), image2[None].to(DEVICE)) flow_low, flow_pr = model(image1, image2, iters=iters, flow_init=flow_prev, test_mode=True) flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() if warm_start: flow_prev = forward_interpolate(flow_low[0])[None].to(DEVICE) output_dir = os.path.join(output_path, dstype, sequence) output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame + 1)) if not os.path.exists(output_dir): os.makedirs(output_dir) frame_utils.writeFlow(output_file, flow) sequence_prev = sequence
def demo(args): model = torch.nn.DataParallel(RAFT(args)) model.load_state_dict(torch.load(args.model)) model = model.module model.to(DEVICE) model.eval() with torch.no_grad(): images = glob.glob(os.path.join(args.path, '*.png')) + \ glob.glob(os.path.join(args.path, '*.jpg')) images = sorted(images) for imfile1, imfile2 in zip(images[:-1], images[1:]): image1 = load_image(imfile1) image2 = load_image(imfile2) padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1, image2) flow_low, flow_up = model(image1, image2, iters=20, test_mode=True) viz(image1, flow_up)
def demo2(args): model = torch.nn.DataParallel(RAFT(args)) model.load_state_dict(torch.load(args.model)) model = model.module model.to(DEVICE) model.eval() sensor = OAKSensor() print("Sensor ok") with torch.no_grad(): while True: buffer = sensor.grab() if buffer: im1 = cv2.flip(buffer['left_stream'], 1) im2 = cv2.flip(buffer['right_stream'], 1) image1 = torch.Tensor(im1).unsqueeze(0).unsqueeze(0).repeat(1, 3, 1, 1).to(DEVICE) image2 = torch.Tensor(im2).unsqueeze(0).unsqueeze(0).repeat(1, 3, 1, 1).to(DEVICE) padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1, image2) t1 = time.perf_counter() flow_low, flow_up = model(image1, image2, iters=30, test_mode=True) t2 = time.perf_counter() print("Time: ", t2 - t1) # view(image1_warped, 'img2_warped') # view(image1, 'img2') viz_disparity(image1, flow_up) viz_gt(buffer['depth_stream']) # cv2.imshow("image", buffer['rgb_stream']) cv2.waitKey(1)
def validate_kitti_colorjitter(model, args, iters=24): """ Peform validation using the KITTI-2015 (train) split """ from tqdm import tqdm model.eval() expandentries = read_splits_mapping(args) for val_id, entry in enumerate(tqdm(expandentries)): seq, idx, _ = entry.split(' ') idx = int(idx) img1path = os.path.join(args.dataset, seq, 'image_02', 'data', "{}.png".format(str(idx).zfill(10))) img2path = os.path.join(args.dataset, seq, 'image_02', 'data', "{}.png".format(str(idx + 1).zfill(10))) if not os.path.exists(img2path): img2path = img1path img1 = np.array(Image.open(img1path)).astype(np.float32) img2 = np.array(Image.open(img2path)).astype(np.float32) img1 = torch.from_numpy(img1).permute([2, 0, 1]).unsqueeze(0) img2 = torch.from_numpy(img2).permute([2, 0, 1]).unsqueeze(0) svfold = os.path.join(args.exportroot, seq, 'image_02') svpath = os.path.join(args.exportroot, seq, 'image_02', "{}.png".format(str(idx).zfill(10))) os.makedirs(svfold, exist_ok=True) image1 = img1.cuda() image2 = img2.cuda() padder = InputPadder(image1.shape, mode='kitti') image1, image2 = padder.pad(image1, image2) flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) flow = padder.unpad(flow_pr[0]).cpu() frame_utils.writeFlowKITTI(svpath, flow.permute(1, 2, 0).numpy()) return
def validate_sintel(model, iters=32): """ Peform validation using the Sintel (train) split """ model.eval() results = {} for dstype in ['clean', 'final']: val_dataset = datasets.MpiSintel(split='training', dstype=dstype) epe_list = [] for val_id in range(len(val_dataset)): image1, image2, flow_gt, _ = val_dataset[val_id] image1 = image1[None].to(DEVICE) image2 = image2[None].to(DEVICE) padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1, image2) flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) flow = padder.unpad(flow_pr[0]).cpu() epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() epe_list.append(epe.view(-1).numpy()) epe_all = np.concatenate(epe_list) epe = np.mean(epe_all) px1 = np.mean(epe_all < 1) px3 = np.mean(epe_all < 3) px5 = np.mean(epe_all < 5) print("Validation (%s) EPE: %f, 1px: %f, 3px: %f, 5px: %f" % (dstype, epe, px1, px3, px5)) results[dstype] = np.mean(epe_list) return results
def validate_kitti(model, iters=24): """ Peform validation using the KITTI-2015 (train) split """ model.eval() val_dataset = datasets.KITTI(split='training') out_list, epe_list = [], [] for val_id in range(len(val_dataset)): image1, image2, flow_gt, valid_gt = val_dataset[val_id] image1 = image1[None].to(DEVICE) image2 = image2[None].to(DEVICE) padder = InputPadder(image1.shape, mode='kitti') image1, image2 = padder.pad(image1, image2) flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) flow = padder.unpad(flow_pr[0]).cpu() epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() mag = torch.sum(flow_gt**2, dim=0).sqrt() epe = epe.view(-1) mag = mag.view(-1) val = valid_gt.view(-1) >= 0.5 out = ((epe > 3.0) & ((epe / mag) > 0.05)).float() epe_list.append(epe[val].mean().item()) out_list.append(out[val].cpu().numpy()) epe_list = np.array(epe_list) out_list = np.concatenate(out_list) epe = np.mean(epe_list) f1 = 100 * np.mean(out_list) print("Validation KITTI: %f, %f" % (epe, f1)) return {'kitti-epe': epe, 'kitti-f1': f1}
def validate_kitti(model, args, eval_loader, eppCbck, group, iters=24): """ Peform validation using the KITTI-2015 (train) split """ model.eval() epe_list = torch.zeros(2).cuda(device=args.gpu) out_list = torch.zeros(2).cuda(device=args.gpu) eppc_list = torch.zeros(2).cuda(device=args.gpu) for val_id, batch in enumerate(tqdm(eval_loader)): image1 = batch['img1'] image1 = Variable(image1) image1 = image1.cuda(args.gpu, non_blocking=True) image2 = batch['img2'] image2 = Variable(image2) image2 = image2.cuda(args.gpu, non_blocking=True) flow_gt = batch['flow'] flow_gt = Variable(flow_gt) flow_gt = flow_gt.cuda(args.gpu, non_blocking=True) flow_gt = flow_gt[0] valid_gt = batch['valid'] valid_gt = Variable(valid_gt) valid_gt = valid_gt.cuda(args.gpu, non_blocking=True) valid_gt = valid_gt[0] intrinsic = batch['intrinsic'] intrinsic = Variable(intrinsic) intrinsic = intrinsic.cuda(args.gpu, non_blocking=True) rel_pose = batch['rel_pose'] rel_pose = Variable(rel_pose) rel_pose = rel_pose.cuda(args.gpu, non_blocking=True) semantic_selector = batch['semantic_selector'] semantic_selector = Variable(semantic_selector) semantic_selector = semantic_selector.cuda(args.gpu, non_blocking=True) padder = InputPadder(image1.shape, mode='kitti') image1, image2 = padder.pad(image1, image2) flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) flow = padder.unpad(flow_pr[0]) eppc = eppCbck.epp_constrain_val(flowest=flow, intrinsic=intrinsic, rel_pose=rel_pose, valid=semantic_selector) epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() mag = torch.sum(flow_gt**2, dim=0).sqrt() epe = epe.view(-1) mag = mag.view(-1) val = valid_gt.view(-1) >= 0.5 out = ((epe > 3.0) & ((epe / mag) > 0.05)).float() epe_list[0] += epe[val].mean().item() epe_list[1] += 1 out_list[0] += out[val].sum() out_list[1] += torch.sum(val) eppc_list[0] += eppc eppc_list[1] += 1 if args.distributed: dist.all_reduce(tensor=epe_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=out_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=eppc_list, op=dist.ReduceOp.SUM, group=group) if args.gpu == 0: epe = epe_list[0] / epe_list[1] f1 = 100 * out_list[0] / out_list[1] eppc = eppc_list[0] / eppc_list[1] print("Validation KITTI, epe: %f, f1: %f, eppc: %f" % (epe, f1, eppc)) return { 'kitti-epe': float(epe.detach().cpu().numpy()), 'kitti-f1': float(f1.detach().cpu().numpy()), 'kitti-eppc': float(eppc.detach().cpu().numpy()) } else: return None
def validate_kitti(model, args, eval_loader, eppCbck, eppconcluer, group, iters=24): """ Peform validation using the KITTI-2015 (train) split """ model.eval() epe_list = torch.zeros(2).cuda(device=args.gpu) out_list = torch.zeros(2).cuda(device=args.gpu) eppc_list = torch.zeros(2).cuda(device=args.gpu) mvl_list = torch.zeros(2).cuda(device=args.gpu) angl_list = torch.zeros(2).cuda(device=args.gpu) residual_opt_list = torch.zeros(2).cuda(device=args.gpu) residual_gt_list = torch.zeros(2).cuda(device=args.gpu) for val_id, batch in enumerate(tqdm(eval_loader)): image1 = batch['img1'] image1 = Variable(image1) image1 = image1.cuda(args.gpu, non_blocking=True) image2 = batch['img2'] image2 = Variable(image2) image2 = image2.cuda(args.gpu, non_blocking=True) flow_gt = batch['flow'] flow_gt = Variable(flow_gt) flow_gt = flow_gt.cuda(args.gpu, non_blocking=True) flow_gt = flow_gt[0] valid_gt = batch['valid'] valid_gt = Variable(valid_gt) valid_gt = valid_gt.cuda(args.gpu, non_blocking=True) valid_gt = valid_gt[0] intrinsic = batch['intrinsic'] intrinsic = Variable(intrinsic) intrinsic = intrinsic.cuda(args.gpu, non_blocking=True) rel_pose = batch['rel_pose'] rel_pose = Variable(rel_pose) rel_pose = rel_pose.cuda(args.gpu, non_blocking=True) E = batch['E'] E = Variable(E) E = E.cuda(args.gpu, non_blocking=True) semantic_selector = batch['semantic_selector'] semantic_selector = Variable(semantic_selector) semantic_selector = semantic_selector.cuda(args.gpu, non_blocking=True) depth = batch['depth'] depth = Variable(depth) depth = depth.cuda(args.gpu, non_blocking=True) padder = InputPadder(image1.shape, mode='kitti') image1, image2 = padder.pad(image1, image2) flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) flow = padder.unpad(flow_pr[0]) pts1, pts2 = eppconcluer.flowmap2ptspair(flowmap=flow.unsqueeze(0), valid=semantic_selector.unsqueeze(0)) outputsrec = eppconcluer.newton_gauss_F(pts2d1=pts1, pts2d2=pts2, intrinsic=intrinsic.squeeze(), posegt=rel_pose.squeeze()) # if outputsrec['loss_mv'] > 0.01 and outputsrec['loss_mv'] < 0.1: # image1_unpad = padder.unpad(image1[0]) # image2_unpad = padder.unpad(image2[0]) # img1 = image1_unpad.cpu().detach().permute([1, 2, 0]).numpy().astype(np.uint8) # img2 = image2_unpad.cpu().detach().permute([1, 2, 0]).numpy().astype(np.uint8) # # validnp = valid_gt.detach().cpu().numpy() == 1 # depthnp = depth[0].cpu().squeeze().numpy() # # h, w = image1_unpad.shape[1::] # xx, yy = np.meshgrid(range(w), range(h), indexing='xy') # # xxf = xx[validnp] # yyf = yy[validnp] # depthf = depthnp[validnp] # xxf_oview = flow_gt[0].detach().cpu().numpy()[validnp] + xxf # yyf_oview = flow_gt[1].detach().cpu().numpy()[validnp] + yyf # # cm = plt.get_cmap('magma') # vmax = 0.15 # tnp = 1 / depthf / vmax # tnp = cm(tnp) # # fig = plt.figure(figsize=(16, 2.5)) # canvas = FigureCanvasAgg(fig) # fig.add_subplot(1, 2, 1) # plt.scatter(xxf, yyf, 1, tnp) # plt.imshow(img1) # # fig.add_subplot(1, 2, 2) # plt.scatter(xxf_oview, yyf_oview, 1, tnp) # plt.imshow(img2) # # plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) # canvas.draw() # buf = canvas.buffer_rgba() # plt.close() # X = np.asarray(buf) # X = np.array(Image.fromarray(X).resize([w * 2, h], Image.BILINEAR)) # Image.fromarray(X).show() # if outputsrec['loss_mv'] > 0.1: # continue eppc = eppCbck.epp_constrain_val(flowest=flow, E=E, valid=semantic_selector) epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() mag = torch.sum(flow_gt**2, dim=0).sqrt() epe = epe.view(-1) mag = mag.view(-1) val = valid_gt.view(-1) >= 0.5 out = ((epe > 3.0) & ((epe/mag) > 0.05)).float() epe_list[0] += epe[val].mean().item() epe_list[1] += 1 out_list[0] += out[val].sum() out_list[1] += torch.sum(val) eppc_list[0] += eppc eppc_list[1] += 1 mvl_list[0] += outputsrec['loss_mv'] mvl_list[1] += 1 angl_list[0] += outputsrec['loss_ang'] angl_list[1] += 1 residual_opt_list[0] += outputsrec['loss_constrain'] residual_opt_list[1] += 1 residual_gt_list[0] += outputsrec['loss_constrain_gt'] residual_gt_list[1] += 1 if args.distributed: dist.all_reduce(tensor=epe_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=out_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=eppc_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=mvl_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=angl_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=residual_opt_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=residual_gt_list, op=dist.ReduceOp.SUM, group=group) if args.gpu == 0: epe = epe_list[0] / epe_list[1] f1 = 100 * out_list[0] / out_list[1] eppc = eppc_list[0] / eppc_list[1] mvl = mvl_list[0] / mvl_list[1] angl = angl_list[0] / angl_list[1] residual_optl = residual_opt_list[0] / residual_opt_list[1] residual_gtl = residual_gt_list[0] / residual_gt_list[1] # print("Validation KITTI, epe: %f, f1: %f, eppc: %f, mvl: %f, angl: %f, residual_optl: %f, residual_gt: %f" % (epe, f1, eppc, mvl, angl, residual_optl, residual_gtl)) return {'kitti-epe': float(epe.detach().cpu().numpy()), 'kitti-f1': float(f1.detach().cpu().numpy()), 'kitti-eppc': float(eppc.detach().cpu().numpy()), 'mvl': float(mvl.detach().cpu().numpy()), 'angl': float(angl.detach().cpu().numpy()), 'residual_optl': float(residual_optl.detach().cpu().numpy()), 'residual_gtl': float(residual_gtl.detach().cpu().numpy()) } else: return None
def validate_kitti(model, args, eval_loader, eppCbck, eppc_dict, group, iters=24): """ Peform validation using the KITTI-2015 (train) split """ model.eval() epe_list = torch.zeros(2).cuda(device=args.gpu) out_list = torch.zeros(2).cuda(device=args.gpu) eppc_list = torch.zeros(2).cuda(device=args.gpu) mvl_list = torch.zeros(2).cuda(device=args.gpu) angl_list = torch.zeros(2).cuda(device=args.gpu) for val_id, batch in enumerate(tqdm(eval_loader)): image1 = batch['img1'] image1 = Variable(image1) image1 = image1.cuda(args.gpu, non_blocking=True) image2 = batch['img2'] image2 = Variable(image2) image2 = image2.cuda(args.gpu, non_blocking=True) flow_gt = batch['flow'] flow_gt = Variable(flow_gt) flow_gt = flow_gt.cuda(args.gpu, non_blocking=True) flow_gt = flow_gt[0] valid_gt = batch['valid'] valid_gt = Variable(valid_gt) valid_gt = valid_gt.cuda(args.gpu, non_blocking=True) valid_gt = valid_gt[0] intrinsic = batch['intrinsic'] intrinsic = Variable(intrinsic) intrinsic = intrinsic.cuda(args.gpu, non_blocking=True) rel_pose = batch['rel_pose'] rel_pose = Variable(rel_pose) rel_pose = rel_pose.cuda(args.gpu, non_blocking=True) E = batch['E'] E = Variable(E) E = E.cuda(args.gpu, non_blocking=True) semantic_selector = batch['semantic_selector'] semantic_selector = Variable(semantic_selector) semantic_selector = semantic_selector.cuda(args.gpu, non_blocking=True) depth = batch['depth'] depth = Variable(depth) depth = depth.cuda(args.gpu, non_blocking=True) padder = InputPadder(image1.shape, mode='kitti') image1, image2 = padder.pad(image1, image2) flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) flow = padder.unpad(flow_pr[0]) bz, _, h, w = depth.shape eppc_key = "{}_{}".format(h, w) if eppc_key not in eppc_dict: eppc = EPPCore(bz=1, height=h, width=w, itnum=100, lr=0.1, lap=1e-2, maxinsnum=10) eppc.to(f'cuda:{args.gpu}') eppc_dict[eppc_key] = eppc eppc = eppc_dict[eppc_key] instancemap = torch.zeros_like(depth) instancemap[semantic_selector.unsqueeze(0) == 0] = -1 instancemap = instancemap.int() t, R = eppc.flow2epp(insmap=instancemap, flowmap=flow.unsqueeze(0), intrinsic=intrinsic) ang = eppc.R2ang(R) t_est = t[0, 0].squeeze() ang_est = ang[0, 0].squeeze() t_gt = rel_pose[0, 0:3, 3] / torch.norm(rel_pose[0, 0:3, 3]) ang_gt = (eppc.R2ang(rel_pose[0, 0:3, 0:3].unsqueeze(0).unsqueeze(0).expand( [-1, 10, -1, -1]))[0, 0]).squeeze() loss_mv = 1 - torch.sum(t_est * t_gt) loss_ang = (ang_est - ang_gt).abs().mean() if loss_mv > 0.1: continue eppc = eppCbck.epp_constrain_val(flowest=flow, E=E, valid=semantic_selector) epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() mag = torch.sum(flow_gt**2, dim=0).sqrt() epe = epe.view(-1) mag = mag.view(-1) val = valid_gt.view(-1) >= 0.5 out = ((epe > 3.0) & ((epe / mag) > 0.05)).float() epe_list[0] += epe[val].mean().item() epe_list[1] += 1 out_list[0] += out[val].sum() out_list[1] += torch.sum(val) eppc_list[0] += eppc eppc_list[1] += 1 mvl_list[0] += loss_mv mvl_list[1] += 1 angl_list[0] += loss_ang angl_list[1] += 1 if args.distributed: dist.all_reduce(tensor=epe_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=out_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=eppc_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=mvl_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=angl_list, op=dist.ReduceOp.SUM, group=group) if args.gpu == 0: epe = epe_list[0] / epe_list[1] f1 = 100 * out_list[0] / out_list[1] eppc = eppc_list[0] / eppc_list[1] mvl = mvl_list[0] / mvl_list[1] angl = angl_list[0] / angl_list[1] return { 'kitti-epe': float(epe.detach().cpu().numpy()), 'kitti-f1': float(f1.detach().cpu().numpy()), 'kitti-eppc': float(eppc.detach().cpu().numpy()), 'mvl': float(mvl.detach().cpu().numpy()), 'angl': float(angl.detach().cpu().numpy()) } else: return None
def validate_kitti(model, args, eval_loader, eppCbck, eppconcluer, group, iters=24): """ Peform validation using the KITTI-2015 (train) split """ model.eval() epe_list = torch.zeros(2).cuda(device=args.gpu) out_list = torch.zeros(2).cuda(device=args.gpu) eppc_list = torch.zeros(2).cuda(device=args.gpu) mvl_list = torch.zeros(2).cuda(device=args.gpu) angl_list = torch.zeros(2).cuda(device=args.gpu) residual_opt_list = torch.zeros(2).cuda(device=args.gpu) residual_gt_list = torch.zeros(2).cuda(device=args.gpu) mvlv2d_list = torch.zeros(2).cuda(device=args.gpu) anglv2d_list = torch.zeros(2).cuda(device=args.gpu) for val_id, batch in enumerate(tqdm(eval_loader)): image1 = batch['img1'] image1 = Variable(image1) image1 = image1.cuda(args.gpu, non_blocking=True) image2 = batch['img2'] image2 = Variable(image2) image2 = image2.cuda(args.gpu, non_blocking=True) flow_gt = batch['flow'] flow_gt = Variable(flow_gt) flow_gt = flow_gt.cuda(args.gpu, non_blocking=True) flow_gt = flow_gt[0] valid_gt = batch['valid'] valid_gt = Variable(valid_gt) valid_gt = valid_gt.cuda(args.gpu, non_blocking=True) valid_gt = valid_gt[0] intrinsic = batch['intrinsic'] intrinsic = Variable(intrinsic) intrinsic = intrinsic.cuda(args.gpu, non_blocking=True) rel_pose = batch['rel_pose'] rel_pose = Variable(rel_pose) rel_pose = rel_pose.cuda(args.gpu, non_blocking=True) E = batch['E'] E = Variable(E) E = E.cuda(args.gpu, non_blocking=True) semantic_selector = batch['semantic_selector'] semantic_selector = Variable(semantic_selector) semantic_selector = semantic_selector.cuda(args.gpu, non_blocking=True) depth = batch['depth'] depth = Variable(depth) depth = depth.cuda(args.gpu, non_blocking=True) rel_pose_deepv2d = read_deepv2d_pose(batch['entry'][0]) rel_pose_deepv2d = Variable(rel_pose_deepv2d) rel_pose_deepv2d = rel_pose_deepv2d.cuda(args.gpu, non_blocking=True) padder = InputPadder(image1.shape, mode='kitti') image1, image2 = padder.pad(image1, image2) flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) flow = padder.unpad(flow_pr[0]) pts1, pts2 = eppconcluer.flowmap2ptspair(flowmap=flow.unsqueeze(0), valid=semantic_selector.unsqueeze(0)) outputsrec = eppconcluer.newton_gauss_F(pts2d1=pts1, pts2d2=pts2, intrinsic=intrinsic.squeeze(), posegt=rel_pose.squeeze(), posedeepv2d=rel_pose_deepv2d) if outputsrec['loss_mv'] > 0.1: continue if True: rel_pose_deepv2d[0:3, 3] = rel_pose_deepv2d[0:3, 3] / torch.norm(rel_pose_deepv2d[0:3, 3]) * torch.norm(rel_pose[0, 0:3, 3]) poses = [rel_pose.squeeze().cpu().numpy(), rel_pose_deepv2d.squeeze().cpu().numpy(), outputsrec['pose_est'].squeeze().cpu().numpy()] vlsroots = ['/media/shengjie/c9c81c9f-511c-41c6-bfe0-2fc19666fb32/Visualizations/kitti_imu_eigen', '/media/shengjie/c9c81c9f-511c-41c6-bfe0-2fc19666fb32/Visualizations/deepv2d_posevls_eigen', '/media/shengjie/c9c81c9f-511c-41c6-bfe0-2fc19666fb32/Visualizations/raft_posevls_eigen_nptsdist'] seq, imgname, _ = batch['entry'][0].split(' ') image1_unpad = padder.unpad(image1[0]) image2_unpad = padder.unpad(image2[0]) img1 = image1_unpad.cpu().detach().permute([1, 2, 0]).numpy().astype(np.uint8) img2 = image2_unpad.cpu().detach().permute([1, 2, 0]).numpy().astype(np.uint8) depthnp = depth[0].cpu().squeeze().numpy() validnp = depthnp > 0 h, w = image1_unpad.shape[1::] xx, yy = np.meshgrid(range(w), range(h), indexing='xy') k = 2 vlsroot = vlsroots[k] posec = poses[k] xxf = xx[validnp] yyf = yy[validnp] depthf = depthnp[validnp] pts3d = np.stack([xxf * depthf, yyf * depthf, depthf, np.ones_like(xxf)], axis=0) intrinsicnp = np.eye(4) intrinsicnp[0:3, 0:3] = intrinsic.squeeze().cpu().numpy() pts3d_oview = intrinsicnp @ posec @ np.linalg.inv(intrinsicnp) @ pts3d pts3d_oview_x = pts3d_oview[0, :] / pts3d_oview[2, :] pts3d_oview_y = pts3d_oview[1, :] / pts3d_oview[2, :] cm = plt.get_cmap('magma') vmax = 0.15 tnp = 1 / depthf / vmax tnp = cm(tnp) fig = plt.figure(figsize=(16, 9)) fig.add_subplot(2, 1, 1) plt.scatter(xxf, yyf, 1, tnp) plt.imshow(img1) fig.add_subplot(2, 1, 2) plt.scatter(pts3d_oview_x, pts3d_oview_y, 1, tnp) plt.imshow(img2) plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.savefig(os.path.join(vlsroot, "{}_{}.png".format(seq.split("/")[1], imgname.zfill(10)))) plt.close() if False: exportroot = '/media/shengjie/disk1/Prediction/RAFT_eigen_pose_nptsdist' seq, imgname, _ = batch['entry'][0].split(' ') svfold = os.path.join(exportroot, seq) os.makedirs(svfold, exist_ok=True) picklepath = os.path.join(svfold, "{}.pickle".format(imgname.zfill(10))) pose2write = outputsrec['pose_est'].squeeze().cpu().numpy() with open(picklepath, 'wb') as handle: pickle.dump(pose2write, handle, protocol=pickle.HIGHEST_PROTOCOL) exportroot = '/media/shengjie/disk1/Prediction/IMU_eigen_pose_nptsdist' seq, imgname, _ = batch['entry'][0].split(' ') svfold = os.path.join(exportroot, seq) os.makedirs(svfold, exist_ok=True) picklepath = os.path.join(svfold, "{}.pickle".format(imgname.zfill(10))) pose2write = rel_pose.squeeze().cpu().numpy() with open(picklepath, 'wb') as handle: pickle.dump(pose2write, handle, protocol=pickle.HIGHEST_PROTOCOL) eppc = eppCbck.epp_constrain_val(flowest=flow, E=E, valid=semantic_selector) epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() mag = torch.sum(flow_gt**2, dim=0).sqrt() epe = epe.view(-1) mag = mag.view(-1) val = valid_gt.view(-1) >= 0.5 out = ((epe > 3.0) & ((epe/mag) > 0.05)).float() epe_list[0] += epe[val].mean().item() epe_list[1] += 1 out_list[0] += out[val].sum() out_list[1] += torch.sum(val) eppc_list[0] += eppc eppc_list[1] += 1 mvl_list[0] += outputsrec['loss_mv'] mvl_list[1] += 1 angl_list[0] += outputsrec['loss_ang'] angl_list[1] += 1 mvlv2d_list[0] += outputsrec['loss_mv_dv2d'] mvlv2d_list[1] += 1 anglv2d_list[0] += outputsrec['loss_ang_dv2d'] anglv2d_list[1] += 1 residual_opt_list[0] += outputsrec['loss_constrain'] residual_opt_list[1] += 1 residual_gt_list[0] += outputsrec['loss_constrain_gt'] residual_gt_list[1] += 1 if args.distributed: dist.all_reduce(tensor=epe_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=out_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=eppc_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=mvl_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=angl_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=residual_opt_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=residual_gt_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=mvlv2d_list, op=dist.ReduceOp.SUM, group=group) dist.all_reduce(tensor=anglv2d_list, op=dist.ReduceOp.SUM, group=group) if args.gpu == 0: epe = epe_list[0] / epe_list[1] f1 = 100 * out_list[0] / out_list[1] eppc = eppc_list[0] / eppc_list[1] mvl = mvl_list[0] / mvl_list[1] angl = angl_list[0] / angl_list[1] residual_optl = residual_opt_list[0] / residual_opt_list[1] residual_gtl = residual_gt_list[0] / residual_gt_list[1] mvl_dv2d = mvlv2d_list[0] / mvlv2d_list[1] angl_dv2d = anglv2d_list[0] / anglv2d_list[1] return {'kitti-epe': float(epe.detach().cpu().numpy()), 'kitti-f1': float(f1.detach().cpu().numpy()), 'kitti-eppc': float(eppc.detach().cpu().numpy()), 'mvl': float(mvl.detach().cpu().numpy()), 'angl': float(angl.detach().cpu().numpy()), 'mvl_dv2d': float(mvl_dv2d.detach().cpu().numpy()), 'angl_dv2d': float(angl_dv2d.detach().cpu().numpy()), 'residual_optl': float(residual_optl.detach().cpu().numpy()), 'residual_gtl': float(residual_gtl.detach().cpu().numpy()) } else: return None