def random_prediction():
    r = random.randint(0, TRAIN_PATH.shape[0] - 1)
    img = np.asarray(
        Image.open(
            LIP_DATASET_SRC / TRAIN_PATH[r, 0]
        )
    )
    print("Original:")
    show_img(img)
    rescaled_img = preprocess_image(img)
    test_predict = model.predict(tf.expand_dims(rescaled_img, axis=0))
    plot_parsing_map(test_predict, label2int=ATRDataset.LABEL2INT)
    pred_mask = create_mask(test_predict)[0]
    show_img(pred_mask)
import numpy as np
import matplotlib.pyplot as plt
import os

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# 在推断模式中,将使用running_mean和running_variance作为bn层的mean和variance
tf.keras.backend.set_learning_phase(False)
# 加载模型
model = tf.saved_model.load('saved_model/overfit_model-1000e')

# 80个类别的名称
class_name = read_class_name('./model_data/coco_classes_chinese.txt')
# 图片名称
file = 'car2.png'
# 图片放缩成608,608,像素值归一化
image, image_data, image_shape = preprocess_image(img_path='train-set/origin/' + file)
# 进行目标检测算法
res_class, res_score, res_boxes = detect(image_data, model)
if len(res_boxes) > 0:
    # image_shape 为原图大小高宽格式,
    # 还原成相对于原图的位置
    res_boxes = res_boxes * np.tile(list(image_shape), 2)
    # 把框画在图片上
    draw_boxes(image, res_score, res_boxes, res_class, class_name, generate_colors(class_name))
    plt.imshow(image)
    plt.show()
    image.save('train-set/detected/'+file, quality=100)
else:
    print('未检测到任何目标')

示例#3
0
import numpy as np
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"


model = DarkNet()
# 编译网络,生成weights参数结构
model(tf.keras.layers.Input(shape=(608, 608, 3)))
# 解析权重参数
yolo_weights = parse_yolo_v2_model_weights(model.weight_shapes, 'yolov2_weights/yolov2.weights')
# 将权重参数导入模型
model.set_weights(yolo_weights)
# 80个类别的名称
class_name = read_class_name('./model_data/coco_classes_chinese.txt')
# 图片名称
f = 'car1.png'
# 图片放缩成608,608,像素值归一化
image, image_data, image_shape = preprocess_image(img_path='images/'+f)
# 进行目标检测算法
res_class, res_score, res_boxes = detect(image_data, model)
# image_shape 为原图大小高宽格式,
# 还原成相对于原图的位置
res_boxes = res_boxes * np.tile(list(image_shape), 2)
# 把框画在图片上
draw_boxes(image, res_score, res_boxes, res_class, class_name, generate_colors(class_name))
# plt.imshow(image)
# plt.show()
# 保存图片
image.save('images/out/' + f, quality=100)

示例#4
0
model(tf.keras.layers.Input(shape=(608, 608, 3)))

print(model.summary())
# 解析权重参数
yolo_weights = parse_yolo_v2_model_weights(model.weight_shapes,
                                           'yolov2_weights/yolov2.weights')
# 将权重参数导入模型
model.set_weights(yolo_weights)
# 80个类别的名称
class_name = read_class_name('./model_data/coco_classes_chinese.txt')

root_path = 'images'
# 检测文件夹下的所有图片,深度为1
for f in os.listdir(root_path):
    nf = os.path.join(root_path, f)
    if os.path.isfile(nf):
        # 图片放缩成608,608,像素值归一化
        image, image_data, image_shape = preprocess_image(img_path=nf)
        # 进行目标检测算法
        res_class, res_score, res_boxes = detect(image_data, model)
        # image_shape 为原图大小高宽格式,
        # 还原成相对于原图的位置
        res_boxes = res_boxes * np.tile(list(image_shape), 2)
        # 把框画在图片上
        draw_boxes(image, res_score, res_boxes, res_class, class_name,
                   generate_colors(class_name))
        # plt.imshow(image)
        # plt.show()
        # 保存图片
        image.save('images/out/' + f, quality=100)
示例#5
0
def predict(filename):

    channel = grpc.insecure_channel("localhost:8500")
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

    request = predict_pb2.PredictRequest()
    # model_name
    request.model_spec.name = "cropper_model"
    # signature name, default is 'serving_default'
    request.model_spec.signature_name = "serving_default"
    start = time.time()
    """
    =========================================
    ===== Crop and align id card image
    =========================================
    """
    filepath = app.config["IMAGE_UPLOADS"] + "/" + filename
    # preprocess image
    img, original_image, original_width, original_height = preprocess_image(
        filepath, Cropper.TARGET_SIZE)
    if img.ndim == 3:
        img = np.expand_dims(img, axis=0)
    # request to cropper model
    request.inputs["input_1"].CopyFrom(
        tf.make_tensor_proto(img, dtype=np.float32, shape=img.shape))
    try:
        result = stub.Predict(request, 10.0)
        result = result.outputs["tf_op_layer_concat_14"].float_val
        result = np.array(result).reshape((-1, 9))

    except Exception as e:
        print(e)

    cropper = Cropper()
    cropper.set_best_bboxes(result,
                            original_width=original_width,
                            original_height=original_height,
                            iou_threshold=0.5)

    # respone to client if image is invalid
    if not cropper.respone_client(threshold_idcard=0.8):
        return render_template('upload_image_again.html')

    cropper.set_image(original_image=original_image)

    # output of cropper part
    aligned_image = getattr(cropper, "image_output")
    cv2.imwrite('app/static/aligned_images/' + filename, aligned_image)
    aligned_image = cv2.cvtColor(aligned_image, cv2.COLOR_BGR2RGB)
    """
    ===========================================
    ==== Detect informations in aligned image
    ===========================================
    """
    # preprocess aligned image
    original_height, original_width, _ = aligned_image.shape
    img = cv2.resize(aligned_image, Detector.TARGET_SIZE)
    img = np.float32(img / 255.)
    # model_name
    request.model_spec.name = "detector_model"
    # signature name, default is 'serving_default'
    request.model_spec.signature_name = "serving_default"

    if img.ndim == 3:
        img = np.expand_dims(img, axis=0)
    # new request to detector model
    request.inputs["input_1"].CopyFrom(
        tf.make_tensor_proto(img, dtype=np.float32, shape=img.shape))

    try:
        result = stub.Predict(request, 10.0)
        result = result.outputs["tf_op_layer_concat_14"].float_val
        result = np.array(result).reshape((-1, 13))

    except Exception as e:
        print(e)

    detector = Detector()
    detector.set_best_bboxes(result,
                             original_width=original_width,
                             original_height=original_height,
                             iou_threshold=0.5)
    detector.set_info_images(original_image=aligned_image)
    # output of detector part
    info_images = getattr(detector, "info_images")
    """
    =====================================
    ==== Reader infors from infors image
    =====================================
    """
    keys = list(info_images.keys())
    keys.remove("thoi_han")
    keys.remove("chan_dung")
    infors = dict()

    # init default value of quoc_tich, dan_toc
    infors['quoc_tich'] = ""
    infors['dan_toc'] = ""

    if "quoc_tich" in keys:
        infors['quoc_tich'] = ["Việt Nam"]
        keys.remove("quoc_tich")

    if "sex" in keys:
        info_image = info_images["sex"]
        infors["sex"] = list()
        for i in range(len(info_image)):
            img = info_image[i]['image']
            s = reader.predict(img)
            if "Na" in s:
                infors["sex"].append("Nam")
            else:
                infors["sex"].append("Nữ")
        keys.remove("sex")

    if "dan_toc" in keys:
        info_image = info_images["dan_toc"]
        infors["dan_toc"] = list()
        for i in range(len(info_image)):
            img = info_image[i]['image']
            s = reader.predict(img)
            s = s.split(" ")[-1]
            infors["dan_toc"].append(s)

        keys.remove("dan_toc")

    for key in keys:
        infors[key] = list()
        info_image = info_images[key]
        for i in range(len(info_image)):
            img = info_image[i]['image']
            s = reader.predict(img)
            infors[key].append(s)
    que_quan_0 = infors['que_quan'][0]
    que_quan_1 = ''
    noi_thuong_tru_0 = infors['noi_thuong_tru'][0]
    noi_thuong_tru_1 = ''
    if len(infors['que_quan']) == 2:
        que_quan_1 = infors['que_quan'][1]
    if len(infors['noi_thuong_tru']) == 2:
        noi_thuong_tru_1 = infors['noi_thuong_tru'][1]

    print("total_time:{}".format(time.time() - start))
    return render_template('predict.html',
                           id=infors['id'][0].replace(" ", ""),
                           full_name=infors['full_name'][0],
                           date_of_birth=infors['date_of_birth'][0],
                           sex=infors['sex'][0],
                           quoc_tich=infors['quoc_tich'],
                           dan_toc=infors['dan_toc'],
                           que_quan_0=que_quan_0,
                           que_quan_1=que_quan_1,
                           noi_thuong_tru_0=noi_thuong_tru_0,
                           noi_thuong_tru_1=noi_thuong_tru_1,
                           filename=str(filename))