def dot(a, b, strict=False): """ Return the dot product of two 2D masked arrays a and b. Like the generic numpy equivalent, the product sum is over the last dimension of a and the second-to-last dimension of b. If strict is True, masked values are propagated: if a masked value appears in a row or column, the whole row or column is considered masked. Parameters ---------- strict : {boolean} Whether masked data are propagated (True) or set to 0 for the computation. Notes ----- The first argument is not conjugated. """ #!!!: Works only with 2D arrays. There should be a way to get it to run with higher dimension if strict and (a.ndim == 2) and (b.ndim == 2): a = mask_rows(a) b = mask_cols(b) # d = np.dot(filled(a, 0), filled(b, 0)) # am = ~getmaskarray(a) bm = ~getmaskarray(b) m = ~np.dot(am, bm) return masked_array(d, mask=m)
def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='', fill_value=True): """Asserts that a comparison relation between two masked arrays is satisfied elementwise.""" # Fill the data first xf = filled(x) yf = filled(y) # Allocate a common mask and refill m = mask_or(getmask(x), getmask(y)) x = masked_array(xf, copy=False, mask=m) y = masked_array(yf, copy=False, mask=m) if ((x is masked) and not (y is masked)) or \ ((y is masked) and not (x is masked)): msg = build_err_msg([x, y], err_msg=err_msg, verbose=verbose, header=header, names=('x', 'y')) raise ValueError(msg) # OK, now run the basic tests on filled versions return utils.assert_array_compare(comparison, x.filled(fill_value), y.filled(fill_value), err_msg=err_msg, verbose=verbose, header=header)
def dot(a,b, strict=False): """Return the dot product of two 2D masked arrays a and b. Like the generic numpy equivalent, the product sum is over the last dimension of a and the second-to-last dimension of b. If strict is True, masked values are propagated: if a masked value appears in a row or column, the whole row or column is considered masked. Parameters ---------- strict : {boolean} Whether masked data are propagated (True) or set to 0 for the computation. Notes ----- The first argument is not conjugated. """ #TODO: Works only with 2D arrays. There should be a way to get it to run with higher dimension if strict and (a.ndim == 2) and (b.ndim == 2): a = mask_rows(a) b = mask_cols(b) # d = np.dot(filled(a, 0), filled(b, 0)) # am = (~getmaskarray(a)) bm = (~getmaskarray(b)) m = ~np.dot(am, bm) return masked_array(d, mask=m)
def assert_array_compare(comparison, x, y, err_msg='', header='', fill_value=True): """Asserts that a comparison relation between two masked arrays is satisfied elementwise.""" xf = filled(x) yf = filled(y) m = mask_or(getmask(x), getmask(y)) x = masked_array(xf, copy=False, subok=False, mask=m).filled(fill_value) y = masked_array(yf, copy=False, subok=False, mask=m).filled(fill_value) if ((x is masked) and not (y is masked)) or \ ((y is masked) and not (x is masked)): msg = build_err_msg([x, y], err_msg, header=header, names=('x', 'y')) raise ValueError(msg) if (x.dtype.char != "O") and (x.dtype.char != "S"): x = x.astype(float_) if isinstance(x, N.ndarray) and x.size > 1: x[N.isnan(x)] = 0 elif N.isnan(x): x = 0 if (y.dtype.char != "O") and (y.dtype.char != "S"): y = y.astype(float_) if isinstance(y, N.ndarray) and y.size > 1: y[N.isnan(y)] = 0 elif N.isnan(y): y = 0 try: cond = (x.shape==() or y.shape==()) or x.shape == y.shape if not cond: msg = build_err_msg([x, y], err_msg + '\n(shapes %s, %s mismatch)' % (x.shape, y.shape), header=header, names=('x', 'y')) assert cond, msg val = comparison(x,y) if m is not nomask and fill_value: val = masked_array(val, mask=m, copy=False) if isinstance(val, bool): cond = val reduced = [0] else: reduced = val.ravel() cond = reduced.all() reduced = reduced.tolist() if not cond: match = 100-100.0*reduced.count(1)/len(reduced) msg = build_err_msg([x, y], err_msg + '\n(mismatch %s%%)' % (match,), header=header, names=('x', 'y')) assert cond, msg except ValueError: msg = build_err_msg([x, y], err_msg, header=header, names=('x', 'y')) raise ValueError(msg)
def almost(a, b, decimal=6, fill_value=True): """Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0**(-decimal) return d.ravel()
def almost(a, b, decimal=6, fill_value=True): """Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return N.equal(d1,d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = N.around(N.abs(x-y),decimal) <= 10.0**(-decimal) return d.ravel()
def _median1D(data): counts = filled(count(data), 0) (idx, rmd) = divmod(counts, 2) if rmd: choice = slice(idx, idx + 1) else: choice = slice(idx - 1, idx + 1) return data[choice].mean(0)
def _median1D(data): counts = filled(count(data, axis),0) (idx, rmd) = divmod(counts, 2) if rmd: choice = slice(idx, idx+1) else: choice = slice(idx-1, idx+1) return data[choice].mean(0)
def approx (a, b, fill_value=1, rtol=1.e-5, atol=1.e-8): """Returns true if all components of a and b are equal subject to given tolerances. If fill_value is 1, masked values considered equal. If fill_value is 0, masked values considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return N.equal(d1,d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = N.less_equal(umath.absolute(x-y), atol + rtol * umath.absolute(y)) return d.ravel()
def approx(a, b, fill_value=True, rtol=1.e-5, atol=1.e-8): """Returns true if all components of a and b are equal subject to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel()
def average(a, axis=None, weights=None, returned=False): """ Average the array over the given axis. Parameters ---------- axis : {None,int}, optional Axis along which to perform the operation. If None, applies to a flattened version of the array. weights : {None, sequence}, optional Sequence of weights. The weights must have the shape of a, or be 1D with length the size of a along the given axis. If no weights are given, weights are assumed to be 1. returned : {False, True}, optional Flag indicating whether a tuple (result, sum of weights/counts) should be returned as output (True), or just the result (False). """ a = asarray(a) mask = a.mask ash = a.shape if ash == (): ash = (1,) if axis is None: if mask is nomask: if weights is None: n = a.sum(axis=None) d = float(a.size) else: w = filled(weights, 0.0).ravel() n = umath.add.reduce(a._data.ravel() * w) d = umath.add.reduce(w) del w else: if weights is None: n = a.filled(0).sum(axis=None) d = umath.add.reduce((-mask).ravel().astype(int)) else: w = array(filled(weights, 0.0), float, mask=mask).ravel() n = add.reduce(a.ravel() * w) d = add.reduce(w) del w else: if mask is nomask: if weights is None: d = ash[axis] * 1.0 n = add.reduce(a._data, axis, dtype=float) else: w = filled(weights, 0.0) wsh = w.shape if wsh == (): wsh = (1,) if wsh == ash: w = np.array(w, float, copy=0) n = add.reduce(a * w, axis) d = add.reduce(w, axis) del w elif wsh == (ash[axis],): ni = ash[axis] r = [None] * len(ash) r[axis] = slice(None, None, 1) w = eval("w[" + repr(tuple(r)) + "] * ones(ash, float)") n = add.reduce(a * w, axis, dtype=float) d = add.reduce(w, axis, dtype=float) del w, r else: raise ValueError, "average: weights wrong shape." else: if weights is None: n = add.reduce(a, axis, dtype=float) d = umath.add.reduce((-mask), axis=axis, dtype=float) else: w = filled(weights, 0.0) wsh = w.shape if wsh == (): wsh = (1,) if wsh == ash: w = array(w, dtype=float, mask=mask, copy=0) n = add.reduce(a * w, axis, dtype=float) d = add.reduce(w, axis, dtype=float) elif wsh == (ash[axis],): ni = ash[axis] r = [None] * len(ash) r[axis] = slice(None, None, 1) w = eval("w[" + repr(tuple(r)) + "] * masked_array(ones(ash, float), mask)") n = add.reduce(a * w, axis, dtype=float) d = add.reduce(w, axis, dtype=float) else: raise ValueError, "average: weights wrong shape." del w if n is masked or d is masked: return masked result = n / d del n if isinstance(result, MaskedArray): if ((axis is None) or (axis == 0 and a.ndim == 1)) and (result.mask is nomask): result = result._data if returned: if not isinstance(d, MaskedArray): d = masked_array(d) if isinstance(d, ndarray) and (not d.shape == result.shape): d = ones(result.shape, dtype=float) * d if returned: return result, d else: return result
def average(a, axis=None, weights=None, returned=False): """Average the array over the given axis. Parameters ---------- axis : {None,int}, optional Axis along which to perform the operation. If None, applies to a flattened version of the array. weights : {None, sequence}, optional Sequence of weights. The weights must have the shape of a, or be 1D with length the size of a along the given axis. If no weights are given, weights are assumed to be 1. returned : {False, True}, optional Flag indicating whether a tuple (result, sum of weights/counts) should be returned as output (True), or just the result (False). """ a = asarray(a) mask = a.mask ash = a.shape if ash == (): ash = (1,) if axis is None: if mask is nomask: if weights is None: n = a.sum(axis=None) d = float(a.size) else: w = filled(weights, 0.0).ravel() n = umath.add.reduce(a._data.ravel() * w) d = umath.add.reduce(w) del w else: if weights is None: n = a.filled(0).sum(axis=None) d = umath.add.reduce((-mask).ravel().astype(int)) else: w = array(filled(weights, 0.0), float, mask=mask).ravel() n = add.reduce(a.ravel() * w) d = add.reduce(w) del w else: if mask is nomask: if weights is None: d = ash[axis] * 1.0 n = add.reduce(a._data, axis, dtype=float) else: w = filled(weights, 0.0) wsh = w.shape if wsh == (): wsh = (1,) if wsh == ash: w = np.array(w, float, copy=0) n = add.reduce(a*w, axis) d = add.reduce(w, axis) del w elif wsh == (ash[axis],): ni = ash[axis] r = [None]*len(ash) r[axis] = slice(None, None, 1) w = eval ("w["+ repr(tuple(r)) + "] * ones(ash, float)") n = add.reduce(a*w, axis, dtype=float) d = add.reduce(w, axis, dtype=float) del w, r else: raise ValueError, 'average: weights wrong shape.' else: if weights is None: n = add.reduce(a, axis, dtype=float) d = umath.add.reduce((-mask), axis=axis, dtype=float) else: w = filled(weights, 0.0) wsh = w.shape if wsh == (): wsh = (1,) if wsh == ash: w = array(w, dtype=float, mask=mask, copy=0) n = add.reduce(a*w, axis, dtype=float) d = add.reduce(w, axis, dtype=float) elif wsh == (ash[axis],): ni = ash[axis] r = [None]*len(ash) r[axis] = slice(None, None, 1) w = eval ("w["+ repr(tuple(r)) + \ "] * masked_array(ones(ash, float), mask)") n = add.reduce(a*w, axis, dtype=float) d = add.reduce(w, axis, dtype=float) else: raise ValueError, 'average: weights wrong shape.' del w if n is masked or d is masked: return masked result = n/d del n if isinstance(result, MaskedArray): if ((axis is None) or (axis==0 and a.ndim == 1)) and \ (result.mask is nomask): result = result._data if returned: if not isinstance(d, MaskedArray): d = masked_array(d) if isinstance(d, ndarray) and (not d.shape == result.shape): d = ones(result.shape, dtype=float) * d if returned: return result, d else: return result
def assert_array_compare(comparison, x, y, err_msg='', header='', fill_value=True): """Asserts that a comparison relation between two masked arrays is satisfied elementwise.""" xf = filled(x) yf = filled(y) m = mask_or(getmask(x), getmask(y)) x = masked_array(xf, copy=False, subok=False, mask=m).filled(fill_value) y = masked_array(yf, copy=False, subok=False, mask=m).filled(fill_value) if ((x is masked) and not (y is masked)) or \ ((y is masked) and not (x is masked)): msg = build_err_msg([x, y], err_msg, header=header, names=('x', 'y')) raise ValueError(msg) if (x.dtype.char != "O") and (x.dtype.char != "S"): x = x.astype(float_) if isinstance(x, N.ndarray) and x.size > 1: x[N.isnan(x)] = 0 elif N.isnan(x): x = 0 if (y.dtype.char != "O") and (y.dtype.char != "S"): y = y.astype(float_) if isinstance(y, N.ndarray) and y.size > 1: y[N.isnan(y)] = 0 elif N.isnan(y): y = 0 try: cond = (x.shape == () or y.shape == ()) or x.shape == y.shape if not cond: msg = build_err_msg([x, y], err_msg + '\n(shapes %s, %s mismatch)' % (x.shape, y.shape), header=header, names=('x', 'y')) assert cond, msg val = comparison(x, y) if m is not nomask and fill_value: val = masked_array(val, mask=m, copy=False) if isinstance(val, bool): cond = val reduced = [0] else: reduced = val.ravel() cond = reduced.all() reduced = reduced.tolist() if not cond: match = 100 - 100.0 * reduced.count(1) / len(reduced) msg = build_err_msg([x, y], err_msg + '\n(mismatch %s%%)' % (match, ), header=header, names=('x', 'y')) assert cond, msg except ValueError: msg = build_err_msg([x, y], err_msg, header=header, names=('x', 'y')) raise ValueError(msg)