示例#1
0
def EEF_main(set_,pi):

	NU = len(set_)
	
	# Initialise output arrays
	Ef_av_array = np.zeros((NU,N,N))
	Ed_av_array = np.zeros((NU,N,N))

	# Now start the loop over each forcing index.
	for ui in range(0,NU):
		#print(ui)

		# Redefine U0 and H0
		#sigma = set_[ui]
		Umag = set_[ui]
 
		U0, H0 = BG_state.BG_uniform(Umag,Hflat,f0,beta,g,y,N)
		U0_nd = U0 / U
		H0_nd = H0 / chi

		# Solution
		a1,a2,a3,a4,b4,c1,c2,c3,c4 = solver.SOLVER_COEFFICIENTS(Ro,Re,K_nd,f_nd,U0_nd,H0_nd,omega_nd,gamma_nd,dy_nd,N)		
		solution = solver.FREE_SLIP_SOLVER(a1,a2,a3,a4,f_nd,b4,c1,c2,c3,c4,Ro*Ftilde1_nd,Ro*Ftilde2_nd,Ftilde3_nd,N,N2)
		utilde_nd, vtilde_nd, etatilde_nd = solver.extractSols(solution,N,N2,BC)
		u, v, h = solver.SPEC_TO_PHYS(utilde_nd,vtilde_nd,etatilde_nd,T_nd,dx_nd,omega_nd,N)
		
		# Take real part. Don't normalise by forcing ampltiude, as we want to compare energy input by forcing.
		u = np.real(u)
		v = np.real(v)
		h = np.real(h)
	
		# Calculate full flow quantities.
		u_full = diagnostics.fullFlow(u,U0_nd)
		h_full = diagnostics.fullFlow(h,H0_nd)

		#==

		# Energy budget terms.
		Ed, Ed_av_array[ui,] = energy.budgetDissipation3(U0_nd,H0_nd,u,v,h,Ro,Re,gamma_nd,dx_nd,dy_nd,T_nd,Nt,N)
		Ef, Ef_av_array[ui,] = energy.budgetForcing(u_full,v,h_full,F1_nd,F2_nd,F3_nd,Ro,N,T_nd,omega_nd,Nt)

		# End loop.

	np.save('Ed_av_array'+str(pi),Ed_av_array)
	np.save('Ef_av_array'+str(pi),Ef_av_array)
示例#2
0
dy = y[1] - y[0]  # Distance between gridpoints (m)
dx = x[1] - x[0]

y_grid, x_grid = np.mgrid[slice(-Ly / 2, Ly / 2 + dy, dy),
                          slice(-Lx / 2, Lx / 2 + 2. * dx, dx)]

K = np.fft.fftfreq(N, Lx / N)  # Array of x-gridpoints in wavenumber space

f = f0 + beta * y  # Coriolis frequency (s-1)

# Background flow
#=======================================================

if BG == 'UNIFORM':
    U0, H0 = BG_state.BG_uniform(Umag, Hflat, f0, beta, g, y, N)
elif BG == 'SHEAR':
    U0, H0 = BG_state.BG_shear(Umag, shear, Hflat, f0, beta, g, y, Ly, N)
elif BG == 'GAUSSIAN':
    U0, H0 = BG_state.BG_Gaussian(Umag, sigma, JET_POS, Hflat, f0, beta, g, y,
                                  Ly, N)
elif BG == 'LAPGAUSS':
    U0, H0 = BG_state.BG_LapGauss(Umag, sigma, JET_POS, Hflat, f0, beta, g, y,
                                  Ly, N)
elif BG == 'QUAD':
    U0, H0 = BG_state.BG_quadratic(Umag, Hflat, f0, beta, g, y, Ly, N)
elif BG == 'ZERO':
    U0, H0 = BG_state.BG_zero(Hflat, N)
else:
    raise ValueError('Invalid BG flow option selected')
示例#3
0
f = f0 + beta * y
# Coriolis frequency (s-1)

# Other physical parameters
#=======================================================

rho1_nd = rho1 / rho2
rho2_nd = (rho2 - rho1) / rho2

# Background flow
#=======================================================

if BG2 == 'NONE':
    if BG1 == 'UNIFORM':
        U1, U2, H1, H2 = BG_state.BG_uniform_none(Umag1, H1_flat, H2_flat,
                                                  rho1_nd, rho2_nd, f0, beta,
                                                  g, y, N)
    elif BG1 == 'GAUSSIAN':
        U1, U2, H1, H2 = BG_state.BG_Gaussian_none(Umag1, sigma, JET_POS,
                                                   H1_flat, H2_flat, rho1_nd,
                                                   rho2_nd, f0, beta, g, y, Ly,
                                                   N)
    elif BG1 == 'NONE':
        U1, U2, H1, H2 = BG_state.BG_none_none(H1_flat, H2_flat, rho1_nd,
                                               rho2_nd, N)
    else:
        raise ValueError('Invalid BG flow option selected')

# Code not updated to include nonzero lower layer BG flows yet.

# Forcing
def EEF_main(set_, pi):

    NU = len(set_)

    # Initialise output arrays
    EEF_array = np.zeros((NU, 2))
    E_array = np.zeros((NU))
    M_array = np.zeros((NU, N, N))
    N_array = np.zeros((NU, N, N))
    Mu_array = np.zeros((NU, N))
    Munorm_array = np.zeros((NU, N))

    # Now start the loop over each forcing index.
    for ui in range(0, NU):

        # Redefine U0 and H0
        #sigma = set_[ui]
        Umag = set_[ui]

        U0, H0 = BG_state.BG_uniform(Umag, Hflat, f0, beta, g, y, N)
        U0_nd = U0 / U
        H0_nd = H0 / chi

        # Solution
        a1, a2, a3, a4, b4, c1, c2, c3, c4 = solver.SOLVER_COEFFICIENTS(
            Ro, Re, K_nd, f_nd, U0_nd, H0_nd, omega_nd, gamma_nd, dy_nd, N)
        solution = solver.FREE_SLIP_SOLVER(a1, a2, a3, a4, f_nd, b4, c1, c2,
                                           c3, c4, Ro * Ftilde1_nd,
                                           Ro * Ftilde2_nd, Ftilde3_nd, N, N2)
        utilde_nd, vtilde_nd, etatilde_nd = solver.extractSols(
            solution, N, N2, BC)
        u, v, h = solver.SPEC_TO_PHYS(utilde_nd, vtilde_nd, etatilde_nd, T_nd,
                                      dx_nd, omega_nd, N)

        # Take real part.
        u = np.real(u)
        v = np.real(v)
        h = np.real(h)

        # Normalise all solutions by the (non-dimensional) forcing amplitude.
        u = u / AmpF_nd
        v = v / AmpF_nd
        h = h / AmpF_nd

        # In order to calculate the vorticities of the system, we require full (i.e. BG + forced response) u and eta.
        #h_full = np.zeros((N,N,Nt))
        #u_full = np.zeros((N,N,Nt))
        #for j in range(0,N):
        #	h_full[j,:,:] = h[j,:,:] + H0_nd[j]
        #	u_full[j,:,:] = u[j,:,:] + U0_nd[j]

        #==

        # Correlations (can do before or after energy)
        #M_array[ui,:,:] = corr.M(u,v,T_nd)
        #N_array[ui,:,:] = corr.N(u,v,T_nd)

        #==

        # Energy
        #KE_BG, KE_BG_tot, PE_BG, PE_BG_tot = energy.energy_BG(U0_nd,H0_nd,Ro,y_nd,dy_nd,N)
        #KE, KE_tot = energy.KE(u_full,v,h_full,x_nd,y_nd,dx_nd,dy_nd,N)
        #PE, PE_tot = energy.PE(h_full,Ro,x_nd,y_nd,dx_nd,dy_nd,N)
        #E_tot = KE_tot + PE_tot - KE_BG_tot - PE_BG_tot
        # Use time-mean KE omitting h for now. Find a better way to do this
        KE = u**2 + v**2
        KE_tot = np.zeros(Nt)
        for ti in range(0, Nt):
            KE_tot[ti] = diagnostics.domainInt(KE[:, :, ti], x_nd, dx_nd, y_nd,
                                               dy_nd)

        E_array[ui] = diagnostics.timeAverage1D(KE_tot, T_nd, Nt)

        # Momentum
        #==========

        uu, uv, vv = momentum.fluxes(u, v)

        Mu, Mv, Mu_array[ui, :], Mv_xav = momentum.footprint(
            uu, uv, vv, x_nd, T_nd, dx_nd, dy_nd, N, Nt)

        #import matplotlib.pyplot as plt
        #plt.plot(KE_tot);plt.show()
        # Normalise by energy
        #u = u / np.sqrt(E_array[ui]); v = v / np.sqrt(E_array[ui]); h = h / np.sqrt(E_array[ui])

        #==

        # Calculate PV fields and PV fluxes.
        #PV_prime, PV_full, PV_BG = PV.potentialVorticity(u,v,h,u_full,h_full,H0_nd,U0_nd,N,Nt,dx_nd,dy_nd,f_nd,Ro)
        #uq, Uq, uQ, UQ, vq, vQ = PV.fluxes(u,v,U0_nd,PV_prime,PV_BG,N,Nt)
        #P, P_xav = PV.footprint(uq,Uq,uQ,UQ,vq,vQ,x_nd,T_nd,dx_nd,dy_nd,N,Nt)

        #EEF_array[ui,:], l_PV = PV.EEF(P_xav,y_nd,y_nd[y0_index],y0_index,dy_nd,N)

        #==

        # Repeat process with normalised velocities.

        u = u / np.sqrt(E_array[ui])
        v = v / np.sqrt(E_array[ui])
        h = h / np.sqrt(E_array[ui])

        uu, uv, vv = momentum.fluxes(u, v)

        Mu, Mv, Munorm_array[ui, :], Mv_xav = momentum.footprint(
            uu, uv, vv, x_nd, T_nd, dx_nd, dy_nd, N, Nt)

        # In order to calculate the vorticities of the system, we require full (i.e. BG + forced response) u and eta.
        #h_full = np.zeros((N,N,Nt))
        #u_full = np.zeros((N,N,Nt))
        #for j in range(0,N):
        #	h_full[j,:,:] = h[j,:,:] + H0_nd[j]
        #	u_full[j,:,:] = u[j,:,:] + U0_nd[j]

        #==

        # Calculate PV fields and PV fluxes.
        #PV_prime, PV_full, PV_BG = PV.potentialVorticity(u,v,h,u_full,h_full,H0_nd,U0_nd,N,Nt,dx_nd,dy_nd,f_nd,Ro)
        #uq, Uq, uQ, UQ, vq, vQ = PV.fluxes(u,v,U0_nd,PV_prime,PV_BG,N,Nt)
        #P, P_xav = PV.footprint(uq,Uq,uQ,UQ,vq,vQ,x_nd,T_nd,dx_nd,dy_nd,N,Nt)

        #EEFnorm_array[ui,:], l_PV = PV.EEF(P_xav,y_nd,y_nd[y0_index],y0_index,dy_nd,N)

    #np.save('EEF_array'+str(pi),EEF_array)
    #np.save('EEFnorm_array'+str(pi),EEFnorm_array)
    #np.save('M_array'+str(pi),M_array)
    #np.save('N_array'+str(pi),N_array)
    np.save('E_array' + str(pi), E_array)
    np.save('Mu_array' + str(pi), Mu_array)
    np.save('Munorm_array' + str(pi), Munorm_array)
示例#5
0
umag_mesh, y0_mesh = np.mgrid[slice(umag_set.min(),(umag_set.max()+du),du),slice(y0_set.min(),y0_set.max()+dy_nd,dy_nd)];
#slice(sigma_set.min()/1000.0,(sigma_set.max()+ds)/1000.,ds/1000.)

#========================================================


Umag_ref = 0.8
sigma_ref = 0.02 * 3840000.

Qyu = np.zeros((Ns,nn))
Qys = np.zeros((Ns,nn))
for ui in range(0,Ns):
	
	# Umag
	sigma = sigma_set[ui]
	U0, H0 = BG_state.BG_Gaussian(Umag_ref,sigma,JET_POS,Hflat,f0,beta,g,y,L,N)
	U0 = U0 / U; H0 = H0 / chi
	U0 = U0[y0_index_set]; H0 = H0[y0_index_set]
	U0y =  diff(U0,2,0,dy_nd)
	Q = (f_nd[y0_index_set] / Ro - U0y) / H0

	Qys[ui,:] = diff(Q,2,0,dy_nd)

	# Sigma
	Umag = umag_set[ui]
	U0, H0 = BG_state.BG_Gaussian(Umag,sigma_ref,JET_POS,Hflat,f0,beta,g,y,L,N)
	U0 = U0 / U; H0 = H0 / chi
	U0 = U0[y0_index_set]; H0 = H0[y0_index_set]
	U0y =  diff(U0,2,0,dy_nd)
	Q = (f_nd[y0_index_set] / Ro - U0y) / H0
def EEF_main(set_, pi):

    NU = len(set_)

    # Initialise output arrays
    EEF_array = np.zeros((NU, 2))

    # Now start the loop over each forcing index.
    for ui in range(0, NU):

        # Redefine U0 and H0.
        #sigma = set_[ui]
        Umag1 = set_[ui]
        U1, U2, H1, H2 = BG_state.BG_uniform_none(Umag1, H1_flat, H2_flat,
                                                  rho1_nd, rho2_nd, f0, beta,
                                                  g, y, N)
        U1 = U1 / U
        U2 = U2 / U
        H1 = H1 / chi
        H2 = H2 / chi

        # Solver coeffs depend on BG state.
        a1, a2, a3, a4, b1, b4, c1, c2, c3, c4, c5, d1, d3, d4, d5, e4, e5, f1, f2, f3, f4 = solver.SOLVER_COEFFICIENTS(
            Ro, Re, K, f, U1, U2, H1, H2, rho1_nd, rho2_nd, omega, gamma, dy,
            N)

        # Solve.
        solution = solver.FREE_SLIP_SOLVER(a1, a2, a3, a4, b1, b4, c1, c2, c3,
                                           c4, c5, d1, d3, d4, d5, e4, e5, f1,
                                           f2, f3, f4, Ro * Ftilde1,
                                           Ro * Ftilde2, Ftilde3, Ro * Ftilde4,
                                           Ro * Ftilde5, Ftilde6, N, N2)

        # Extract flow components.
        utilde, vtilde, htilde = solver.extractSols(solution, N, N2, BC)
        u, v, h = solver.SPEC_TO_PHYS(utilde, vtilde, htilde, T, Nt, dx, omega,
                                      N)

        # Take real part.
        u = np.real(u)
        v = np.real(v)
        h = np.real(h)

        # For use in PV and footprint calculations: the 'full' zonal velocities and interface thicknesses.
        u_full = np.zeros((N, N, Nt, 2))
        h_full = np.zeros((N, N, Nt, 2))
        for j in range(0, N):
            u_full[j, :, :, 0] = u[j, :, :, 0] + U1[j]
            u_full[j, :, :, 1] = u[j, :, :, 1] + U2[j]
            h_full[j, :, :, 0] = h[j, :, :, 0] + H1[j]
            h_full[j, :, :, 1] = h[j, :, :, 1] + H2[j]

        # Call function calculate PV in upper layer.
        q = np.zeros((N, N, Nt, 2))
        q_full = np.zeros((N, N, Nt, 2))
        Q = np.zeros((N, 2))
        q[:, :, :,
          0], q_full[:, :, :,
                     0], Q[:, 0] = PV.vort(u[:, :, :, 0], v[:, :, :, 0],
                                           h[:, :, :, 0], u_full[:, :, :, 0],
                                           h_full[:, :, :,
                                                  0], H1, U1, N, Nt, dx, dy, f)

        # Calculate footprints using previously calculated PV.
        P, P_xav = PV.footprint(u_full[:, :, :, 0], v[:, :, :, 0],
                                q_full[:, :, :, 0], x, y, dx, dy, T, Nt)

        # EEF
        EEF_array[ui, :], l = PV.EEF(P_xav, y, y0, y0_index, dy, N)

        # End loop.

    # Save output from processor pi.
    np.save('EEF_array' + str(pi), EEF_array)