pltname=D['outname']) """perform various analyses""" msg = "sampling time: " + str(D['sampling_time']) + " seconds" cc.WP(msg, D['wrt_file']) msg = "model evidence: " + str(D['lnZ']) + \ " +/- " + str(D['dlnZ']) cc.WP(msg, D['wrt_file']) cp.plot_hist(flattrace, D['pname'], D['pname_plt'], param_true=D['param_true'], pltname=D['outname']) cc.coef_summary(flattrace, D['pname'], D['outname']) bounds = ((.25, 2.1), (-.8, 2.2), (0, .6)) cp.plot_cov(flattrace, D['pname_plt'], param_true=D['param_true'], bounds=bounds, figsize=[5.5, 5.5], pltname=D['outname']) cp.plot_prediction(flattrace, D['name_list'], D['Tt'], D['At'], D['It'], feval,
cc.WP(msg, D['wrt_file']) cp.plot_chains(D['rawtrace'], flattrace, D['nlinks'], D['pname'], D['pname_plt'], pltname=D['outname']) cp.plot_squiggles(D['rawtrace'], 0, 1, D['pname_plt'], pltname=D['outname']) """perform various analyses""" msg = "sampling time: " + str(D['sampling_time']) + " seconds" WP(msg, D['wrt_file']) msg = "model evidence: " + str(D['lnZ']) + \ " +/- " + str(D['dlnZ']) cc.WP(msg, D['wrt_file']) cc.coef_summary(flattrace, D['pname'], D['wrt_file']) nxtprior = np.zeros((2, D['nparam'])) nxtprior[0, :] = np.mean(flattrace, 0) - 5*np.std(flattrace, 0) nxtprior[1, :] = 10*np.std(flattrace, 0) np.savetxt(D['outname'] + '_prior.csv', nxtprior) cp.plot_hist(flattrace, D['pname'], D['pname_plt'], pltname=D['outname']) cp.plot_cov(flattrace, D['pname_plt'], pltname=D['outname'], tight_layout=False) """configure model prediction plots for Cp, H, S and G""" name_list_l = [D['name_list_Cp'], D['name_list_H'], None, None] Tt_l = [D['Tt_Cp'], D['Tt_H'], None, None] At_l = [D['At_Cp'], D['At_H'], None, None]