def load_state_dic(self, state_dic):
        """ resume training, load the information
        """
        try:
            if self.seq_num != state_dic['seq_num']:
                nii_display.f_print("Number of samples are different \
                from previous training", 'error')
                nii_display.f_print("Please make sure that you are \
                using the same training/development sets as before.", "error")
                nii_display.f_print("Or\nPlease add --")
                nii_display.f_print("ignore_training_history_in_trained_model")
                nii_display.f_die(" to avoid loading training history")

            if self.epoch_num == state_dic['epoch_num']:
                self.loss_mat = state_dic['loss_mat']
                self.time_mat = state_dic['time_mat']
            else:
                # if training epoch is increased, resize the shape
                tmp_loss_mat = state_dic['loss_mat']
                self.loss_mat = np.resize(
                    self.loss_mat, 
                    [self.epoch_num, self.seq_num, tmp_loss_mat.shape[2]])
                self.loss_mat[0:tmp_loss_mat.shape[0]] = tmp_loss_mat
                self.time_mat[0:tmp_loss_mat.shape[0]] = state_dic['time_mat']

            self.seq_num = state_dic['seq_num']
            # since the saved cur_epoch has been finished
            self.cur_epoch = state_dic['cur_epoch'] + 1
            self.best_error = state_dic['best_error']
            self.best_epoch = state_dic['best_epoch']
            self.loss_flag = state_dic['loss_flag']
            self.seq_names = {}
        except KeyError:
            nii_display.f_die("Invalid op_process_monitor state_dic")
def text2code(text, flag_lang='EN'):
    """ Convert text string into code indices
    
    input
    -----
      text: string
      flag_lang: string, 'EN': English

    output
    ------
      code_seq: list of integers
    """
    code_seq = []

    # parse the curly bracket
    text_trunks = toolkit_all.parse_curly_bracket(text)

    # parse
    if flag_lang == 'EN':
        # English text
        for text_trunk in text_trunks:
            code_seq += toolkit_en.text2code(text_trunk)
    else:
        # unsupporte languages
        nii_warn.f_die("Error: text2code cannot handle {:s}".format(flag_lang))

    # convert to numpy format
    code_seq = np.array(code_seq, dtype=nii_dconf.h_dtype)

    return code_seq
    def __init__(self, model, args):
        """ Initialize an optimizer over model.parameters()
        """
        # check valildity of model
        if not hasattr(model, "parameters"):
            nii_warn.f_print("model is not torch.nn", "error")
            nii_warn.f_die("Error in creating OptimizerWrapper")

        # set optimizer type
        self.op_flag = args.optimizer
        self.lr = args.lr

        # create optimizer
        if self.op_flag == "Adam":
            self.optimizer = torch_optim.Adam(model.parameters(), lr=self.lr)
        elif self.op_flag == "RMSprop":
            self.optimizer = torch_optim.RMSprop(model.parameters(),
                                                 lr=self.lr)
        else:
            nii_warn.f_print("%s not availabel" % (self.op_flag), "error")
            nii_warn.f_die("Please change optimizer")

        # number of epochs
        self.epochs = args.epochs
        self.no_best_epochs = args.no_best_epochs

        return
 def _get_loss_for_learning_stopping(self, epoch_idx):
     # compute the average loss values
     if epoch_idx > self.cur_epoch:
         nii_display.f_print("To find loss for future epochs", 'error')
         nii_display.f_die("Op_process_monitor: error")
     if epoch_idx < 0:
         nii_display.f_print("To find loss for NULL epoch", 'error')
         nii_display.f_die("Op_process_monitor: error")
     loss_this = np.sum(self.loss_mat[epoch_idx, :, :], axis=0)
     # compute only part of the loss for early stopping when necessary
     loss_this = np.sum(loss_this * self.loss_flag)
     return loss_this
示例#5
0
    def print_error_for_batch(self, cnt_idx, seq_idx, epoch_idx):
        try:
            t_1 = self.loss_mat[epoch_idx, seq_idx]
            t_2 = self.time_mat[epoch_idx, seq_idx]

            mes = "{}, ".format(self.seq_names[seq_idx])
            mes += "{:d}/{:d}, ".format(cnt_idx+1, \
                                             self.seq_num)
            mes += "Time: {:.6f}s, Loss: {:.6f}".format(t_2, t_1)
            nii_display.f_eprint(mes, flush=True)
        except IndexError:
            nii_display.f_die("Unknown sample index in Monitor")
        except KeyError:
            nii_display.f_die("Unknown sample index in Monitor")
        return
示例#6
0
    def f_check_file_list(self):
        """ f_check_file_list():
            Check the file list after initialization
            Make sure that the file in file_list appears in every 
            input/output feature directory. 
            If not, get a file_list in which every file is avaiable
            in every input/output directory
        """
        if not isinstance(self.m_file_list, list):
            nii_warn.f_print("Read file list from directories")
            self.m_list = None            
        
        #  get a initial file list
        if self.m_file_list is None:
            self.m_file_list = nii_list_tools.listdir_with_ext(
                self.m_input_dirs[0], self.m_input_exts[0])

        # check the list of files exist in all input/output directories
        for tmp_d, tmp_e in zip(self.m_input_dirs[1:], \
                                self.m_input_exts[1:]):
            tmp_list = nii_list_tools.listdir_with_ext(tmp_d, tmp_e)
            self.m_file_list = nii_list_tools.common_members(
                tmp_list, self.m_file_list)

        if len(self.m_file_list) < 1:
            nii_warn.f_print("No input features after scannning", 'error')
            nii_warn.f_print("Please check input config", 'error')
            nii_warn.f_print("Please check feature directory", 'error')

        # check output files if necessary
        if self.m_output_dirs:
            for tmp_d, tmp_e in zip(self.m_output_dirs, \
                                    self.m_output_exts):
                tmp_list = nii_list_tools.listdir_with_ext(tmp_d, tmp_e)
                self.m_file_list = nii_list_tools.common_members(
                    tmp_list, self.m_file_list)

            if len(self.m_file_list) < 1:
                nii_warn.f_print("No output data found", 'error')
                nii_warn.f_die("Please check outpupt config")
        else:
            #nii_warn.f_print("Not loading output features")
            pass
        
        # done
        return
def symbol_num(flag_lang='EN'):
    """ Return the number of symbols defined for one language
    
    input
    -----
      flag_lange: string, 'EN': English

    output
    ------
      integer
    """
    if flag_lang == 'EN':
        return toolkit_en.symbol_num()
    else:
        nii_warn.f_die(
            "Error: symbol_num cannot handle {:s}".format(flag_lang))
    return 0
示例#8
0
    def __init__(self, buf_dataseq_length, batch_size):
        """ SamplerBlockShuffleByLength(buf_dataseq_length, batch_size)
        args
        ----
          buf_dataseq_length: list or np.array of int, 
                              length of each data in a dataset
          batch_size: int, batch_size
        """
        if batch_size == 1:
            mes = "Sampler block shuffle by length requires batch-size>1"
            nii_warn.f_die(mes)

        # hyper-parameter, just let block_size = batch_size * 3
        self.m_block_size = batch_size * 4
        # idx sorted based on sequence length
        self.m_idx = np.argsort(buf_dataseq_length)
        return
示例#9
0
    def __init__(self, config_path):
        """ initialization
        """
        # get configuration path
        self.m_config_path = None
        if os.path.isfile(config_path):
            self.m_config_path = config_path
        else:
            nii_display.f_die("Cannot find %s" % (config_path), 'error')

        # path configuration file
        self.m_config = self.f_parse()
        if self.m_config is None:
            nii_display.f_die("Fail to parse %s" % (config_path), 'error')

        # done
        return
 def __getitem__(self, i):
     """ getitem from the corresponding subcorpus
     """
     # for example, data1 = [a], data2 = [b, c]
     # self.len_buffer = [1, 2]
     # self.len_top = [1, 3] 
     # self.len_bot = [0, 1]
     #  __getitem__(0) -> data1[0-0] = a
     #  __getitem__(1) -> data2[1-1] = b
     #  __getitem__(2) -> data2[2-1] = c
     for idx_u, idx_d, subset in \
         zip(self.len_top, self.len_bot, self.datasets):
         if i < idx_u:
             return subset.__getitem__(i - idx_d)
         else:
             # keep going to the next subset
             pass
     nii_warn.f_die("Merge dataset: fatal error in __getitem__")
     return None
示例#11
0
def code2text(codes, flag_lang='EN'):
    """ Convert text string into code indices
    
    input
    -----
      code_seq: numpy arrays of integers
      flag_lang: string, 'EN': English

    output
    ------
      text: string
    """
    # convert numpy array backto indices
    codes_tmp = [int(x) for x in codes]

    output_text = ''
    if flag_lang == 'EN':
        output_text = toolkit_en.code2text(codes_tmp)
    else:
        nii_warn.f_die("Error: code2text cannot handle {:s}".format(flag_lang))
    return output_text
示例#12
0
    def load_state_dic(self, state_dic):
        """ resume training, load the information
        """
        try:
            if self.seq_num != state_dic['seq_num']:
                nii_display.f_print(
                    "Number of samples are different \
                from previous training", 'error')
                nii_display.f_die("Please make sure resumed training are \
                using the same training/development sets as before")

            self.loss_mat = state_dic['loss_mat']
            self.time_mat = state_dic['time_mat']
            self.epoch_num = state_dic['epoch_num']
            self.seq_num = state_dic['seq_num']
            # since the saved cur_epoch has been finished
            self.cur_epoch = state_dic['cur_epoch'] + 1
            self.best_error = state_dic['best_error']
            self.best_epoch = state_dic['best_epoch']
            self.seq_names = {}
        except KeyError:
            nii_display.f_die("Invalid op_process_monitor state_dic")
def f_loss_check(loss_module, model_type=None):
    """ f_loss_check(pt_model)
    Check whether the loss module contains all the necessary keywords 
    
    Args: 
    ----
      loss_module, a class
      model_type, a str or None
    Return:
    -------
    """
    nii_display.f_print("Loss check")
    
    if model_type in nii_nn_manage_conf.loss_method_keywords_bags:
        keywords_bag = nii_nn_manage_conf.loss_method_keywords_bags[model_type]
    else:
        keywords_bag = nii_nn_manage_conf.loss_method_keywords_default

    for tmpkey in keywords_bag.keys():
        flag_mandatory, mes = keywords_bag[tmpkey]

        # mandatory keywords
        if flag_mandatory:
            if not hasattr(loss_module, tmpkey):
                nii_display.f_print("Please implement %s (%s)" % (tmpkey, mes))
                nii_display.f_die("[Error]: found no %s in Loss" % (tmpkey))
            else:
                # no need to print other information here
                pass #print("[OK]: %s found" % (tmpkey))
        else:
            if not hasattr(loss_module, tmpkey):
                # no need to print other information here
                pass #print("[OK]: %s is ignored, %s" % (tmpkey, mes))
            else:
                print("[OK]: use %s, %s" % (tmpkey, mes))
        # done
    nii_display.f_print("Loss check done\n")
    return
示例#14
0
 def f_retrieve(self, keyword, section_name=None, config_type=None):
     """ f_retrieve(self, keyword, section_name=None, config_type=None)
     retrieve the keyword from config file
     
     Return:
        value: string, int, float
     
     Parameters:
        keyword: 'keyword' to be retrieved
        section: which section is this keyword in the config. 
                 None will search all the config sections and 
                 return the first
        config_type: which can be 'int', 'float', or None.
                 None will return the value as a string
     """
     tmp_value = None
     if section_name is None:
         # if section is not given, search all the sections
         for section_name in self.m_config.sections():
             tmp_value = self.f_retrieve(keyword, section_name, \
                                         config_type)
             if tmp_value is not None:
                 break
     elif section_name in self.m_config.sections() or \
          section_name == 'DEFAULT':
         tmp_sec = self.m_config[section_name]
         # search a specific section
         if config_type == 'int':
             tmp_value = tmp_sec.getint(keyword, fallback=None)
         elif config_type == 'float':
             tmp_value = tmp_sec.getfloat(keyword, fallback=None)
         elif config_type == 'bool':
             tmp_value = tmp_sec.getboolean(keyword, fallback=None)
         else:
             tmp_value = tmp_sec.get(keyword, fallback=None)
     else:
         nii_display.f_die("Unknown section %s" % (section_name))
     return tmp_value
示例#15
0
    def f_log_data_len(self, file_name, t_len, t_reso):
        """ f_log_data_len(file_name, t_len, t_reso):
        Log down the length of the data file.

        When comparing the different input/output features for the same
        file_name, only keep the shortest length
        """
        # the length for the sequence with the fast tempoeral rate
        # For example, acoustic-feature -> waveform 16kHz,
        # if acoustic-feature is one frame per 5ms,
        #  tmp_len = acoustic feature frame length * (5 * 16)
        # where t_reso = 5*16 is the up-sampling rate of acoustic feature
        tmp_len = t_len * t_reso
        
        # save length when have not read the file
        if file_name not in self.m_data_length:
            self.m_data_length[file_name] = tmp_len

        # check length
        if t_len == 1:
            # if this is an utterance-level feature, it has only 1 frame
            pass
        elif self.f_valid_len(self.m_data_length[file_name], tmp_len, \
                            nii_dconf.data_seq_min_length):
            # if the difference in length is small
            if self.m_data_length[file_name] > tmp_len:
                self.m_data_length[file_name] = tmp_len
        else:
            nii_warn.f_print("Sequence length mismatch:", 'error')
            self.f_check_specific_data(file_name)
            nii_warn.f_print("Please the above features", 'error')
            nii_warn.f_die("Possible invalid data %s" % (file_name))

        # adjust the length so that, when reso is used,
        # the sequence length will be N * reso
        tmp = self.m_data_length[file_name]
        self.m_data_length[file_name] = self.f_adjust_len(tmp)
        return
    def __init__(self, model, args):
        """ Initialize an optimizer over model.parameters()
        """
        # check valildity of model
        if not hasattr(model, "parameters"):
            nii_warn.f_print("model is not torch.nn", "error")
            nii_warn.f_die("Error in creating OptimizerWrapper")

        # set optimizer type
        self.op_flag = args.optimizer
        self.lr = args.lr
        self.l2_penalty = args.l2_penalty

        # grad clip norm is directly added in nn_manager
        self.grad_clip_norm = args.grad_clip_norm

        # create optimizer
        if self.op_flag == "Adam":
            if self.l2_penalty > 0:
                self.optimizer = torch_optim.Adam(model.parameters(),
                                                  lr=self.lr,
                                                  weight_decay=self.l2_penalty)
            else:
                self.optimizer = torch_optim.Adam(model.parameters(),
                                                  lr=self.lr)

        else:
            nii_warn.f_print("%s not availabel" % (self.op_flag), "error")
            nii_warn.f_die("Please change optimizer")

        # number of epochs
        self.epochs = args.epochs
        self.no_best_epochs = args.no_best_epochs

        # lr scheduler
        self.lr_scheduler = nii_lr_scheduler.LRScheduler(self.optimizer, args)
        return
示例#17
0
    def f_check_specific_data(self, file_name):
        """ check the data length of a specific file
        """
        tmp_dirs = self.m_input_dirs.copy()
        tmp_exts = self.m_input_exts.copy()
        tmp_dims = self.m_input_dims.copy()
        tmp_reso = self.m_input_reso.copy()
        tmp_dirs.extend(self.m_output_dirs)
        tmp_exts.extend(self.m_output_exts)
        tmp_dims.extend(self.m_output_dims)
        tmp_reso.extend(self.m_output_reso)        
        
        # loop over each input/output feature type
        for t_dir, t_ext, t_dim, t_res in \
            zip(tmp_dirs, tmp_exts, tmp_dims, tmp_reso):

            file_path = nii_str_tk.f_realpath(t_dir, file_name, t_ext)
            if not nii_io_tk.file_exist(file_path):
                nii_warn.f_die("%s not found" % (file_path))
            else:        
                t_len  = self.f_length_data(file_path) // t_dim
                print("%s, length %d, dim %d, reso: %d" % \
                      (file_path, t_len, t_dim, t_res))
        return
def f_model_check(pt_model, model_type=None):
    """ f_model_check(pt_model)
    Check whether the model contains all the necessary keywords 
    
    Args: 
    ----
      pt_model: a Pytorch model
      model_type_flag: str or None, a flag indicating the type of network

    Return:
    -------
    """
    nii_display.f_print("Model check:")
    if model_type in nii_nn_manage_conf.nn_model_keywords_bags:
        keywords_bag = nii_nn_manage_conf.nn_model_keywords_bags[model_type]
    else:
        keywords_bag = nii_nn_manage_conf.nn_model_keywords_default
    
    for tmpkey in keywords_bag.keys():
        flag_mandatory, mes = keywords_bag[tmpkey]

        # mandatory keywords
        if flag_mandatory:
            if not hasattr(pt_model, tmpkey):
                nii_display.f_print("Please implement %s (%s)" % (tmpkey, mes))
                nii_display.f_die("[Error]: found no %s in Model" % (tmpkey))
            else:
                print("[OK]: %s found" % (tmpkey))
        else:
            if not hasattr(pt_model, tmpkey):
                print("[OK]: %s is ignored, %s" % (tmpkey, mes))
            else:
                print("[OK]: use %s, %s" % (tmpkey, mes))
        # done
    nii_display.f_print("Model check done\n")
    return
示例#19
0
    def f_putitem(self, output_data, save_dir, data_infor_str):
        """ 
        """
        # Change the dimension to (length, dim)
        if output_data.ndim == 3 and output_data.shape[0] == 1:
            # When input data is (batchsize=1, length, dim)
            output_data = output_data[0]
        elif output_data.ndim == 2 and output_data.shape[0] == 1:
            # When input data is (batchsize=1, length)
            output_data = np.expand_dims(output_data[0], -1)
        else:
            nii_warn.f_print("Output data format not supported.", "error")
            nii_warn.f_print("Format is not (batch, len, dim)", "error")
            nii_warn.f_die("Please use batch_size = 1 in generation")

        # Save output
        if output_data.shape[1] != self.m_output_all_dim:
            nii_warn.f_print("Output data dim != expected dim", "error")
            nii_warn.f_print("Output:%d" % (output_data.shape[1]), \
                             "error")
            nii_warn.f_print("Expected:%d" % (self.m_output_all_dim), \
                             "error")
            nii_warn.f_die("Please check configuration")
        
        if not os.path.isdir(save_dir):
            try:
                os.mkdir(save_dir)
            except OSError:
                nii_warn.f_die("Cannot carete {}".format(save_dir))

        # read the sentence information
        tmp_seq_info = nii_seqinfo.SeqInfo()
        tmp_seq_info.parse_from_str(data_infor_str)

        # write the data
        file_name = tmp_seq_info.seq_tag()
        s_dim = 0
        e_dim = 0
        for t_ext, t_dim in zip(self.m_output_exts, self.m_output_dims):
            e_dim = s_dim + t_dim
            file_path = nii_str_tk.f_realpath(save_dir, file_name, t_ext)
            self.f_write_data(output_data[:, s_dim:e_dim], file_path)
        
        return
示例#20
0
def f_inference_wrapper(args, pt_model, device, \
                        test_dataset_wrapper, checkpoint):
    """ Wrapper for inference
    """

    # prepare dataloader
    test_data_loader = test_dataset_wrapper.get_loader()
    test_seq_num = test_dataset_wrapper.get_seq_num()
    test_dataset_wrapper.print_info()

    # cuda device
    if torch.cuda.device_count() > 1 and args.multi_gpu_data_parallel:
        nii_display.f_print("DataParallel for inference is not implemented",
                            'warning')
    nii_display.f_print("\nUse single GPU: %s\n" % \
                        (torch.cuda.get_device_name(device)))

    # print the network
    pt_model.to(device, dtype=nii_dconf.d_dtype)
    nii_nn_tools.f_model_show(pt_model)

    # load trained model parameters from checkpoint
    cp_names = nii_nn_manage_conf.CheckPointKey()
    if type(checkpoint) is dict and cp_names.state_dict in checkpoint:
        pt_model.load_state_dict(checkpoint[cp_names.state_dict])
    else:
        pt_model.load_state_dict(checkpoint)

    # start generation
    nii_display.f_print("Start inference (generation):", 'highlight')

    pt_model.eval()
    with torch.no_grad():
        for _, (data_in, data_tar, data_info, idx_orig) in \
            enumerate(test_data_loader):

            # send data to device and convert data type
            data_in = data_in.to(device, dtype=nii_dconf.d_dtype)
            if isinstance(data_tar, torch.Tensor):
                data_tar = data_tar.to(device, dtype=nii_dconf.d_dtype)

            # compute output
            start_time = time.time()

            # in case the model defines inference function explicitly
            if hasattr(pt_model, "inference"):
                infer_func = pt_model.inference
            else:
                infer_func = pt_model.forward

            if args.model_forward_with_target:
                # if model.forward requires (input, target) as arguments
                # for example, for auto-encoder
                if args.model_forward_with_file_name:
                    data_gen = infer_func(data_in, data_tar, data_info)
                else:
                    data_gen = infer_func(data_in, data_tar)
            else:
                if args.model_forward_with_file_name:
                    data_gen = infer_func(data_in, data_info)
                else:
                    data_gen = infer_func(data_in)

            time_cost = time.time() - start_time
            # average time for each sequence when batchsize > 1
            time_cost = time_cost / len(data_info)

            if data_gen is None:
                nii_display.f_print("No output saved: %s" % (str(data_info)),\
                                    'warning')
                for idx, seq_info in enumerate(data_info):
                    _ = nii_op_display_tk.print_gen_info(seq_info, time_cost)
                continue
            else:
                try:
                    data_gen = pt_model.denormalize_output(data_gen)
                    data_gen_np = data_gen.to("cpu").numpy()
                except AttributeError:
                    mes = "Output data is not torch.tensor. Please check "
                    mes += "model.forward or model.inference"
                    nii_display.f_die(mes)

                # save output (in case batchsize > 1, )
                for idx, seq_info in enumerate(data_info):
                    _ = nii_op_display_tk.print_gen_info(seq_info, time_cost)
                    test_dataset_wrapper.putitem(data_gen_np[idx:idx+1],\
                                                 args.output_dir, \
                                                 seq_info)

        # done for
    # done with

    #
    nii_display.f_print("Generated data to %s" % (args.output_dir))

    # finish up if necessary
    if hasattr(pt_model, "finish_up_inference"):
        pt_model.finish_up_inference()

    # done
    return
示例#21
0
def f_run_one_epoch(args,
                    pt_model, loss_wrapper, \
                    device, monitor,  \
                    data_loader, epoch_idx, optimizer = None, \
                    target_norm_method = None):
    """
    f_run_one_epoch: 
       run one poech over the dataset (for training or validation sets)

    Args:
       args:         from argpase
       pt_model:     pytorch model (torch.nn.Module)
       loss_wrapper: a wrapper over loss function
                     loss_wrapper.compute(generated, target) 
       device:       torch.device("cuda") or torch.device("cpu")
       monitor:      defined in op_procfess_monitor.py
       data_loader:  pytorch DataLoader. 
       epoch_idx:    int, index of the current epoch
       optimizer:    torch optimizer or None
                     if None, the back propgation will be skipped
                     (for developlement set)
       target_norm_method: method to normalize target data
                           (by default, use pt_model.normalize_target)
    """
    # timer
    start_time = time.time()

    # loop over samples
    for data_idx, (data_in, data_tar, data_info, idx_orig) in \
        enumerate(data_loader):

        #############
        # prepare
        #############
        # idx_orig is the original idx in the dataset
        # which can be different from data_idx when shuffle = True
        #idx_orig = idx_orig.numpy()[0]
        #data_seq_info = data_info[0]

        # send data to device
        if optimizer is not None:
            optimizer.zero_grad()

        ############
        # compute output
        ############
        data_in = data_in.to(device, dtype=nii_dconf.d_dtype)
        if args.model_forward_with_target:
            # if model.forward requires (input, target) as arguments
            # for example, for auto-encoder & autoregressive model
            if isinstance(data_tar, torch.Tensor):
                data_tar_tm = data_tar.to(device, dtype=nii_dconf.d_dtype)
                if args.model_forward_with_file_name:
                    data_gen = pt_model(data_in, data_tar_tm, data_info)
                else:
                    data_gen = pt_model(data_in, data_tar_tm)
            else:
                nii_display.f_print("--model-forward-with-target is set")
                nii_display.f_die("but data_tar is not loaded")
        else:
            if args.model_forward_with_file_name:
                # specifcal case when model.forward requires data_info
                data_gen = pt_model(data_in, data_info)
            else:
                # normal case for model.forward(input)
                data_gen = pt_model(data_in)

        #####################
        # compute loss and do back propagate
        #####################

        # Two cases
        # 1. if loss is defined as pt_model.loss, then let the users do
        #    normalization inside the pt_mode.loss
        # 2. if loss_wrapper is defined as a class independent from model
        #    there is no way to normalize the data inside the loss_wrapper
        #    because the normalization weight is saved in pt_model

        if hasattr(pt_model, 'loss'):
            # case 1, pt_model.loss is available
            if isinstance(data_tar, torch.Tensor):
                data_tar = data_tar.to(device, dtype=nii_dconf.d_dtype)
            else:
                data_tar = []

            loss_computed = pt_model.loss(data_gen, data_tar)
        else:
            # case 2, loss is defined independent of pt_model
            if isinstance(data_tar, torch.Tensor):
                data_tar = data_tar.to(device, dtype=nii_dconf.d_dtype)
                # there is no way to normalize the data inside loss
                # thus, do normalization here
                if target_norm_method is None:
                    normed_target = pt_model.normalize_target(data_tar)
                else:
                    normed_target = target_norm_method(data_tar)
            else:
                normed_target = []

            # return the loss from loss_wrapper
            # loss_computed may be [[loss_1, loss_2, ...],[flag_1, flag_2,.]]
            #   which contain multiple loss and flags indicating whether
            #   the corresponding loss should be taken into consideration
            #   for early stopping
            # or
            # loss_computed may be simply a tensor loss
            loss_computed = loss_wrapper.compute(data_gen, normed_target)

        loss_values = [0]
        # To handle cases where there are multiple loss functions
        # when loss_comptued is [[loss_1, loss_2, ...],[flag_1, flag_2,.]]
        #   loss: sum of [loss_1, loss_2, ...], for backward()
        #   loss_values: [loss_1.item(), loss_2.item() ..], for logging
        #   loss_flags: [True/False, ...], for logging,
        #               whether loss_n is used for early stopping
        # when loss_computed is loss
        #   loss: loss
        #   los_vals: [loss.item()]
        #   loss_flags: [True]
        loss, loss_values, loss_flags = nii_nn_tools.f_process_loss(
            loss_computed)

        # Back-propgation using the summed loss
        if optimizer is not None:
            # backward propagation
            loss.backward()

            # apply gradient clip
            if args.grad_clip_norm > 0:
                grad_norm = torch.nn.utils.clip_grad_norm_(
                    pt_model.parameters(), args.grad_clip_norm)

            # update parameters
            optimizer.step()

        # save the training process information to the monitor
        end_time = time.time()
        batchsize = len(data_info)
        for idx, data_seq_info in enumerate(data_info):
            # loss_value is supposed to be the average loss value
            # over samples in the the batch, thus, just loss_value
            # rather loss_value / batchsize
            monitor.log_loss(loss_values, loss_flags, \
                             (end_time-start_time) / batchsize, \
                             data_seq_info, idx_orig.numpy()[idx], \
                             epoch_idx)
            # print infor for one sentence
            if args.verbose == 1:
                monitor.print_error_for_batch(data_idx*batchsize + idx,\
                                              idx_orig.numpy()[idx], \
                                              epoch_idx)
            #
        # start the timer for a new batch
        start_time = time.time()

        # Save intermediate model for every n mini-batches (optional).
        # Note that if we re-start trainining with this intermediate model,
        #  the data will start from the 1st sample, not the one where we stopped
        if args.save_model_every_n_minibatches > 0 \
           and (data_idx+1) % args.save_model_every_n_minibatches == 0 \
           and optimizer is not None and data_idx > 0:
            cp_names = nii_nn_manage_conf.CheckPointKey()
            tmp_model_name = nii_nn_tools.f_save_epoch_name(
                args, epoch_idx, '_{:05d}'.format(data_idx + 1))
            # save
            tmp_dic = {
                cp_names.state_dict: pt_model.state_dict(),
                cp_names.optimizer: optimizer.state_dict()
            }
            torch.save(tmp_dic, tmp_model_name)

    # loop done
    return
示例#22
0
    def __getitem__(self, idx):
        """ __getitem__(self, idx):
        Return input, output
        
        For test set data, output can be None
        """
        try:
            tmp_seq_info = self.m_seq_info[idx]
        except IndexError:
            nii_warn.f_die("Sample %d is not in seq_info" % (idx))

        # file_name
        file_name = tmp_seq_info.seq_tag()
        
        # For input data
        input_reso = self.m_input_reso[0]
        seq_len = int(tmp_seq_info.seq_length() // input_reso)
        s_idx = (tmp_seq_info.seq_start_pos() // input_reso)
        e_idx = s_idx + seq_len
        
        input_dim = self.m_input_all_dim
        in_data = np.zeros([seq_len, input_dim], dtype=nii_dconf.h_dtype)
        s_dim = 0
        e_dim = 0

        # loop over each feature type
        for t_dir, t_ext, t_dim, t_res in \
            zip(self.m_input_dirs, self.m_input_exts, \
                self.m_input_dims, self.m_input_reso):
            e_dim = s_dim + t_dim
            
            # get file path and load data
            file_path = nii_str_tk.f_realpath(t_dir, file_name, t_ext)
            try:
                tmp_d = self.f_load_data(file_path, t_dim) 
            except IOError:
                nii_warn.f_die("Cannot find %s" % (file_path))

            # write data
            if tmp_d.shape[0] == 1:
                # input data has only one frame, duplicate
                if tmp_d.ndim > 1:
                    in_data[:,s_dim:e_dim] = tmp_d[0,:]
                elif t_dim == 1:
                    in_data[:,s_dim] = tmp_d
                else:
                    nii_warn.f_die("Dimension wrong %s" % (file_path))
            else:
                # normal case
                if tmp_d.ndim > 1:
                    # write multi-dimension data
                    in_data[:,s_dim:e_dim] = tmp_d[s_idx:e_idx,:]
                elif t_dim == 1:
                    # write one-dimension data
                    in_data[:,s_dim] = tmp_d[s_idx:e_idx]
                else:
                    nii_warn.f_die("Dimension wrong %s" % (file_path))
            s_dim = e_dim

        # load output data
        if self.m_output_dirs:
            seq_len = tmp_seq_info.seq_length()
            s_idx = tmp_seq_info.seq_start_pos()
            e_idx = s_idx + seq_len
        
            out_dim = self.m_output_all_dim
            out_data = np.zeros([seq_len, out_dim], \
                                dtype = nii_dconf.h_dtype)
            s_dim = 0
            e_dim = 0
            for t_dir, t_ext, t_dim in zip(self.m_output_dirs, \
                                           self.m_output_exts, \
                                           self.m_output_dims):
                e_dim = s_dim + t_dim
                # get file path and load data
                file_path = nii_str_tk.f_realpath(t_dir, file_name, t_ext)
                try:
                    tmp_d = self.f_load_data(file_path, t_dim) 
                except IOError:
                    nii_warn.f_die("Cannot find %s" % (file_path))

                if tmp_d.shape[0] == 1:
                    if tmp_d.ndim > 1:
                        out_data[:,s_dim:e_dim] = tmp_d[0,:]
                    elif t_dim == 1:
                        out_data[:,s_dim]=tmp_d
                    else:
                        nii_warn.f_die("Dimension wrong %s" % (file_path))
                else:
                    if tmp_d.ndim > 1:
                        out_data[:,s_dim:e_dim] = tmp_d[s_idx:e_idx,:]
                    elif t_dim == 1:
                        out_data[:,s_dim]=tmp_d[s_idx:e_idx]
                    else:
                        nii_warn.f_die("Dimension wrong %s" % (file_path))
                s_dim = s_dim + t_dim
        else:
            out_data = []

        return in_data, out_data, tmp_seq_info.print_to_str(), idx
示例#23
0
    def f_calculate_stats(self, flag_cal_data_len, flag_cal_mean_std):
        """ f_calculate_stats
        Log down the number of time steps for each file
        Calculate the mean/std
        """
        # check
        #if not self.m_output_dirs:
        #    nii_warn.f_print("Calculating mean/std", 'error')
        #    nii_warn.f_die("But output_dirs is not provided")

        # prepare the directory, extension, and dimensions
        tmp_dirs = self.m_input_dirs.copy()
        tmp_exts = self.m_input_exts.copy()
        tmp_dims = self.m_input_dims.copy()
        tmp_reso = self.m_input_reso.copy()
        tmp_norm = self.m_input_norm.copy()        
        tmp_dirs.extend(self.m_output_dirs)
        tmp_exts.extend(self.m_output_exts)
        tmp_dims.extend(self.m_output_dims)
        tmp_reso.extend(self.m_output_reso)
        tmp_norm.extend(self.m_output_norm)
        
        # starting dimension of one type of feature
        s_dim = 0
        # ending dimension of one type of feature        
        e_dim = 0
        
        # loop over each input/output feature type
        for t_dir, t_ext, t_dim, t_reso, t_norm in \
            zip(tmp_dirs, tmp_exts, tmp_dims, tmp_reso, tmp_norm):
            
            s_dim = e_dim
            e_dim = s_dim + t_dim
            t_cnt = 0
            mean_i, var_i = np.zeros([t_dim]), np.zeros([t_dim])
            
            # loop over all the data
            for file_name in self.m_file_list:
                # get file path
                file_path = nii_str_tk.f_realpath(t_dir, file_name, t_ext)
                if not nii_io_tk.file_exist(file_path):
                    nii_warn.f_die("%s not found" % (file_path))
                    
                # read the length of the data
                if flag_cal_data_len:
                    t_len  = self.f_length_data(file_path) // t_dim
                    self.f_log_data_len(file_name, t_len, t_reso)
                    
                    
                # accumulate the mean/std recursively
                if flag_cal_mean_std:
                    t_data  = self.f_load_data(file_path, t_dim)

                    # if the is F0 data, only consider voiced data
                    if t_ext in nii_dconf.f0_unvoiced_dic:
                        unvoiced_value = nii_dconf.f0_unvoiced_dic[t_ext]
                        t_data = t_data[t_data > unvoiced_value]
                    # mean_i, var_i, t_cnt will be updated using online
                    # accumulation method
                    mean_i, var_i, t_cnt = nii_stats.f_online_mean_std(
                        t_data, mean_i, var_i, t_cnt)

            # save mean and std for one feature type
            if flag_cal_mean_std:
                # if not normalize this dimension, set mean=0, std=1
                if not t_norm:
                    mean_i[:] = 0
                    var_i[:] = 1
                    
                if s_dim < self.m_input_all_dim:
                    self.m_input_mean[s_dim:e_dim] = mean_i

                    std_i = nii_stats.f_var2std(var_i)
                    self.m_input_std[s_dim:e_dim] = std_i
                else:
                    tmp_s = s_dim - self.m_input_all_dim
                    tmp_e = e_dim - self.m_input_all_dim
                    self.m_output_mean[tmp_s:tmp_e] = mean_i
                    std_i = nii_stats.f_var2std(var_i)
                    self.m_output_std[tmp_s:tmp_e] = std_i

        if flag_cal_data_len:
            # create seq_info
            self.f_log_seq_info()
            self.f_save_data_len(self.m_data_len_path)
            
        if flag_cal_mean_std:
            self.f_save_mean_std(self.m_ms_input_path,
                                 self.m_ms_output_path)
        # done
        return
示例#24
0
def f_run_one_epoch(args,
                    pt_model, loss_wrapper, \
                    device, monitor,  \
                    data_loader, epoch_idx, optimizer = None, \
                    target_norm_method = None):
    """
    f_run_one_epoch: 
       run one poech over the dataset (for training or validation sets)

    Args:
       args:         from argpase
       pt_model:     pytorch model (torch.nn.Module)
       loss_wrapper: a wrapper over loss function
                     loss_wrapper.compute(generated, target) 
       device:       torch.device("cuda") or torch.device("cpu")
       monitor:      defined in op_procfess_monitor.py
       data_loader:  pytorch DataLoader. 
       epoch_idx:    int, index of the current epoch
       optimizer:    torch optimizer or None
                     if None, the back propgation will be skipped
                     (for developlement set)
       target_norm_method: method to normalize target data
                           (by default, use pt_model.normalize_target)
    """
    # timer
    start_time = time.time()

    # loop over samples
    pbar = tqdm(data_loader)
    epoch_num = monitor.get_max_epoch()
    for data_idx, (data_in, data_tar, data_info, idx_orig) in enumerate(pbar):
        pbar.set_description("Epoch: {}/{}".format(epoch_idx, epoch_num))
        # idx_orig is the original idx in the dataset
        # which can be different from data_idx when shuffle = True
        #idx_orig = idx_orig.numpy()[0]
        #data_seq_info = data_info[0]

        # send data to device
        if optimizer is not None:
            optimizer.zero_grad()

        # compute
        data_in = data_in.to(device, dtype=nii_dconf.d_dtype)
        if args.model_forward_with_target:
            # if model.forward requires (input, target) as arguments
            # for example, for auto-encoder & autoregressive model
            if isinstance(data_tar, torch.Tensor):
                data_tar_tm = data_tar.to(device, dtype=nii_dconf.d_dtype)
                if args.model_forward_with_file_name:
                    data_gen = pt_model(data_in, data_tar_tm, data_info)
                else:
                    data_gen = pt_model(data_in, data_tar_tm)
            else:
                nii_display.f_print("--model-forward-with-target is set")
                nii_display.f_die("but data_tar is not loaded")
        else:
            if args.model_forward_with_file_name:
                # specifcal case when model.forward requires data_info
                data_gen = pt_model(data_in, data_info)
            else:
                # normal case for model.forward(input)
                data_gen = pt_model(data_in)

        # compute loss and do back propagate
        loss_vals = [0]
        if isinstance(data_tar, torch.Tensor):
            data_tar = data_tar.to(device, dtype=nii_dconf.d_dtype)
            # there is no way to normalize the data inside loss
            # thus, do normalization here
            if target_norm_method is None:
                normed_target = pt_model.normalize_target(data_tar)
            else:
                normed_target = target_norm_method(data_tar)

            # return the loss from loss_wrapper
            # loss_computed may be [[loss_1, loss_2, ...],[flag_1, flag_2,.]]
            #   which contain multiple loss and flags indicating whether
            #   the corresponding loss should be taken into consideration
            #   for early stopping
            # or
            # loss_computed may be simply a tensor loss
            loss_computed = loss_wrapper.compute(data_gen, normed_target)

            # To handle cases where there are multiple loss functions
            # when loss_comptued is [[loss_1, loss_2, ...],[flag_1, flag_2,.]]
            #   loss: sum of [loss_1, loss_2, ...], for backward()
            #   loss_vals: [loss_1.item(), loss_2.item() ..], for logging
            #   loss_flags: [True/False, ...], for logging,
            #               whether loss_n is used for early stopping
            # when loss_computed is loss
            #   loss: loss
            #   los_vals: [loss.item()]
            #   loss_flags: [True]
            loss, loss_vals, loss_flags = nii_nn_tools.f_process_loss(
                loss_computed)

            # Back-propgation using the summed loss
            if optimizer is not None:
                loss.backward()
                optimizer.step()

        # save the training process information to the monitor
        end_time = time.time()
        batchsize = len(data_info)
        for idx, data_seq_info in enumerate(data_info):
            # loss_value is supposed to be the average loss value
            # over samples in the the batch, thus, just loss_value
            # rather loss_value / batchsize
            monitor.log_loss(loss_vals, loss_flags, \
                             (end_time-start_time) / batchsize, \
                             data_seq_info, idx_orig.numpy()[idx], \
                             epoch_idx)
            # print infor for one sentence
            if args.verbose == 1:
                monitor.print_error_for_batch(data_idx*batchsize + idx,\
                                              idx_orig.numpy()[idx], \
                                              epoch_idx)
            #
        # start the timer for a new batch
        start_time = time.time()

    # lopp done
    pbar.close()
    return
def f_run_one_epoch(args,
                    pt_model, loss_wrapper, \
                    device, monitor,  \
                    data_loader, epoch_idx, optimizer = None):
    """
    f_run_one_epoch: 
       run one poech over the dataset (for training or validation sets)

    Args:
       args:         from argpase
       pt_model:     pytorch model (torch.nn.Module)
       loss_wrapper: a wrapper over loss function
                     loss_wrapper.compute(generated, target) 
       device:       torch.device("cuda") or torch.device("cpu")
       monitor:      defined in op_procfess_monitor.py
       data_loader:  pytorch DataLoader. 
       epoch_idx:    int, index of the current epoch
       optimizer:    torch optimizer or None
                     if None, the back propgation will be skipped
                     (for developlement set)
    """
    # timer
    start_time = time.time()

    # loop over samples
    for data_idx, (data_in, data_tar, data_info, idx_orig) in \
        enumerate(data_loader):

        # idx_orig is the original idx in the dataset
        # which can be different from data_idx when shuffle = True
        #idx_orig = idx_orig.numpy()[0]
        #data_seq_info = data_info[0]

        # send data to device
        if optimizer is not None:
            optimizer.zero_grad()

        # compute
        data_in = data_in.to(device, dtype=nii_dconf.d_dtype)
        if args.model_forward_with_target:
            # if model.forward requires (input, target) as arguments
            # for example, for auto-encoder & autoregressive model
            if isinstance(data_tar, torch.Tensor):
                data_tar_tm = data_tar.to(device, dtype=nii_dconf.d_dtype)
                data_gen = pt_model(data_in, data_tar_tm)
            else:
                nii_display.f_print("--model-forward-with-target is set")
                nii_display.f_die("but no data_tar is not loaded")
        else:
            # normal case for model.forward(input)
            data_gen = pt_model(data_in)

        # compute loss and do back propagate
        loss_value = 0
        if isinstance(data_tar, torch.Tensor):
            data_tar = data_tar.to(device, dtype=nii_dconf.d_dtype)
            # there is no way to normalize the data inside loss
            # thus, do normalization here
            normed_target = pt_model.normalize_target(data_tar)
            loss = loss_wrapper.compute(data_gen, normed_target)
            loss_value = loss.item()
            if optimizer is not None:
                loss.backward()
                optimizer.step()

        # log down process information
        end_time = time.time()
        batchsize = len(data_info)
        for idx, data_seq_info in enumerate(data_info):
            monitor.log_loss(loss_value / batchsize, \
                             (end_time-start_time) / batchsize, \
                             data_seq_info, idx_orig.numpy()[idx], \
                             epoch_idx)
            # print infor for one sentence
            if args.verbose == 1:
                monitor.print_error_for_batch(data_idx*batchsize + idx,\
                                              idx_orig.numpy()[idx], \
                                              epoch_idx)
            #
        # start the timer for a new batch
        start_time = time.time()

    # lopp done
    return
    def __init__(self,
                 dataset_name, \
                 list_file_list, \
                 list_input_dirs, input_exts, input_dims, input_reso, \
                 input_norm, \
                 list_output_dirs, output_exts, output_dims, output_reso, \
                 output_norm, \
                 stats_path, \
                 data_format = nii_dconf.h_dtype_str, \
                 params = None, \
                 truncate_seq = None, \
                 min_seq_len = None,
                 save_mean_std = True, \
                 wav_samp_rate = None, \
                 flag_lang = 'EN', \
                 way_to_merge = 'concatenate', 
                 global_arg = None,
                 dset_config = None,
                 augment_funcs = None,
                 transform_funcs = None):
        """ Signature is similar to default_io.NIIDataSetLoader.
        file_list, input_dirs, and output_dirs are different.
        One additional optional argument is way_to_merge.

        Args
        ----
            data_set_name: a string to name this dataset
                           this will be used to name the statistics files
                           such as the mean/std for this dataset
            list_file_list: a list of file_name path
            list_input_dirs: a list of lists of dirs for input features
            input_exts: a list of input feature name extentions
            input_dims: a list of input feature dimensions
            input_reso: a list of input feature temporal resolution,
                        or None
            input_norm: a list of bool, whether normalize input feature or not

            list_output_dirs: a list of lists of dirs for output features
            output_exts: a list of output feature name extentions
            output_dims: a list of output feature dimensions
            output_reso: a list of output feature temporal resolution, 
                         or None
            output_norm: a list of bool, whether normalize target feature or not

            stats_path: path to the directory of statistics(mean/std)
            data_format: method to load the data
                    '<f4' (default): load data as float32m little-endian
                    'htk': load data as htk format
            params: parameter for torch.utils.data.DataLoader

            truncate_seq: None or int, 
                          truncate data sequence into smaller truncks
                          truncate_seq > 0 specifies the trunck length
            min_seq_len: None (default) or int, minimum length of an utterance
                         utterance shorter than min_seq_len will be ignored
            save_mean_std: bool, True (default): save mean and std 
            wav_samp_rate: None (default) or int, if input data has  waveform, 
                         please set sampling rate. It is used by _data_writer
            flag_lang: str, 'EN' (default), if input data has text, text will
                       be converted into code indices. flag_lang indicates the 
                     language for the text processer. It is used by _data_reader
            wav_to_merge: string, 'concatenate' (default) or 'merge'
                     'concatenate': simply concatenate multiple corpora
                     'merge': create minibatch by merging data from each copora
            global_arg: argument parser returned by arg_parse.f_args_parsed()
                      default None
            augment_funcs: None, or list of functions for data augmentation
            transform_funcs: None, or list of functions for data transformation

        Methods
        -------
            get_loader(): return a torch.util.data.DataLoader
            get_dataset(): return a torch.util.data.DataSet
        """ 
        # check whether input_dirs and output_dirs are lists
        if type(list_input_dirs[0]) is list and \
           type(list_output_dirs[0]) is list and \
           type(list_file_list) is list and \
           len(list_input_dirs) == len(list_output_dirs) and \
           len(list_input_dirs) == len(list_file_list):
            pass
        else:
            mes = "NII_MergeDataSetLoader: input_dirs, output_dirs, "
            mes += "and file_list should be list of lists. "
            mes += "They should have equal length. But we have:"
            mes += "{:s}\n{:s}\n{:s}".format(
                str(list_input_dirs), str(list_output_dirs), 
                str(list_file_list))
            nii_warn.f_die(mes)
        
        if type(dataset_name) is list:
            if len(dataset_name) != len(list_input_dirs):
                mes = "dataset_name should have {:d} elements. ".format(
                    len(list_file_list))
                mes += "But we have: {:s}".format(str(dataset_name))
                nii_warn.f_die(mes)
            elif len(list(set(dataset_name))) != len(list_input_dirs):
                mes = "dataset_name has duplicated elements: {:s}".format(
                    str(dataset_name))
                nii_warn.f_die(mes)
            else:
                tmp_dnames = dataset_name
        else:
            tmp_dnames = [dataset_name + '_sub_{:d}'.format(idx) \
                          for idx in np.arange(len(list_input_dirs))]
            
                

        # create individual datasets
        lst_dset = []
        for sub_input_dirs, sub_output_dirs, sub_file_list, tmp_name in \
            zip(list_input_dirs, list_output_dirs, list_file_list, tmp_dnames):
            
            lst_dset.append(
                nii_default_dset.NIIDataSetLoader(
                    tmp_name,
                    sub_file_list,
                    sub_input_dirs, input_exts, input_dims, input_reso, \
                    input_norm, \
                    sub_output_dirs, output_exts, output_dims, output_reso, \
                    output_norm, \
                    stats_path, data_format, params, truncate_seq, min_seq_len,
                    save_mean_std, wav_samp_rate, flag_lang, global_arg))
        
        # list of the datasets
        self.m_datasets = lst_dset
        
        self.way_to_merge = way_to_merge

        # create data loader
        if way_to_merge == 'concatenate':
            
            # to create DataLoader, we need the pytorch.dataset
            py_datasets = ConcatDataset([x.get_dataset() for x in lst_dset])
            
            # legacy implementation, no need to use
            ####
            # Although members in l_dset have Dataloader, we need to 
            # create a dataloder for the concatenate dataset
            ###
            if params is None:
                tmp_params = nii_dconf.default_loader_conf
            else:
                tmp_params = params.copy()
                            
            # save parameters
            self.m_params = tmp_params.copy()

            # 
            if 'sampler' in tmp_params:
                tmp_sampler = None
                if tmp_params['sampler'] == nii_sampler_fn.g_str_sampler_bsbl:
                    if 'batch_size' in tmp_params:
                        # initialize the sampler
                        tmp_sampler = nii_sampler_fn.SamplerBlockShuffleByLen(
                            py_datasets.f_get_seq_len_list(), 
                            tmp_params['batch_size'])
                        # turn off automatic shuffle
                        tmp_params['shuffle'] = False
                    else:
                        nii_warn.f_die("Sampler requires batch size > 1")
                tmp_params['sampler'] = tmp_sampler

            # collate function
            if 'batch_size' in tmp_params and tmp_params['batch_size'] > 1:
                # use customize_collate to handle data with unequal length
                #  we cannot use default collate_fn
                collate_fn = nii_collate_fn.customize_collate
            else:
                collate_fn = None
            
            # use default DataLoader
            self.m_loader = torch.utils.data.DataLoader(
                py_datasets, collate_fn=collate_fn, **tmp_params)

        else:
            # sample mini-batches of equal size from each sub dataset
            # use specific dataloader
            self.m_loader = merge_loader(lst_dset)
            self.m_params = lst_dset[0].get_loader_params()
        return
示例#27
0
    def __init__(self,
                 dataset_name, \
                 file_list, \
                 input_dirs, input_exts, input_dims, input_reso, \
                 input_norm, \
                 output_dirs, output_exts, output_dims, output_reso, \
                 output_norm, \
                 stats_path, \
                 data_format = '<f4', \
                 truncate_seq = None, \
                 min_seq_len = None, \
                 save_mean_std = True, \
                 wav_samp_rate = None):
        """
        Args:
            dataset_name: name of this data set
            file_list: a list of file name strings (without extension)
            input_dirs: a list of dirs from each input feature is loaded
            input_exts: a list of input feature name extentions
            input_dims: a list of input feature dimensions
            input_reso: a list of input feature temporal resolutions
            output_dirs: a list of dirs from each output feature is loaded
            output_exts: a list of output feature name extentions
            output_dims: a list of output feature dimensions
            output_reso: a list of output feature temporal resolutions
            stat_path: path to the directory that saves mean/std, 
                       utterance length
            data_format: method to load the data
                    '<f4' (default): load data as float32m little-endian
                    'htk': load data as htk format
            truncate_seq: None or int, truncate sequence into truncks.
                          truncate_seq > 0 specifies the trunck length
        """
        # initialization
        self.m_set_name = dataset_name
        self.m_file_list = file_list
        self.m_input_dirs = input_dirs
        self.m_input_exts = input_exts
        self.m_input_dims = input_dims
        
        self.m_output_dirs = output_dirs
        self.m_output_exts = output_exts
        self.m_output_dims = output_dims

        if len(self.m_input_dirs) != len(self.m_input_exts) or \
           len(self.m_input_dirs) != len(self.m_input_dims):
            nii_warn.f_print("Input dirs, exts, dims, unequal length",
                             'error')
            nii_warn.f_print(str(self.m_input_dirs), 'error')
            nii_warn.f_print(str(self.m_input_exts), 'error')
            nii_warn.f_print(str(self.m_input_dims), 'error')
            nii_warn.f_die("Please check input dirs, exts, dims")

        if len(self.m_output_dims) != len(self.m_output_exts) or \
           (self.m_output_dirs and \
            len(self.m_output_dirs) != len(self.m_output_exts)):
            nii_warn.f_print("Output dirs, exts, dims, unequal length", \
                             'error')
            nii_warn.f_die("Please check output dirs, exts, dims")

        # fill in m_*_reso and m_*_norm
        def _tmp_f(list2, default_value, length):
            if list2 is None:
                return [default_value for x in range(length)]
            else:
                return list2
            
        self.m_input_reso = _tmp_f(input_reso, 1, len(input_dims))
        self.m_input_norm = _tmp_f(input_norm, True, len(input_dims))
        self.m_output_reso = _tmp_f(output_reso, 1, len(output_dims))
        self.m_output_norm = _tmp_f(output_norm, True, len(output_dims))
        if len(self.m_input_reso) != len(self.m_input_dims):
            nii_warn.f_die("Please check input_reso")
        if len(self.m_output_reso) != len(self.m_output_dims):
            nii_warn.f_die("Please check output_reso")
        if len(self.m_input_norm) != len(self.m_input_dims):
            nii_warn.f_die("Please check input_norm")
        if len(self.m_output_norm) != len(self.m_output_dims):
            nii_warn.f_die("Please check output_norm")
        
        # dimensions
        self.m_input_all_dim = sum(self.m_input_dims)
        self.m_output_all_dim = sum(self.m_output_dims)
        self.m_io_dim = self.m_input_all_dim + self.m_output_all_dim

        self.m_truncate_seq = truncate_seq
        self.m_min_seq_len = min_seq_len
        self.m_save_ms = save_mean_std

        # in case there is waveform data in input or output features 
        self.m_wav_sr = wav_samp_rate
            
        # sanity check on resolution configuration
        # currently, only input features can have different reso,
        # and the m_input_reso must be the same for all input features
        if any([x != self.m_input_reso[0] for x in self.m_input_reso]):
            nii_warn.f_print("input_reso: %s" % (str(self.m_input_reso)),\
                             'error')
            nii_warn.f_print("NIIDataSet not support", 'error', end='')
            nii_warn.f_die(" different input_reso")
        if any([x != 1 for x in self.m_output_reso]):
            nii_warn.f_print("NIIDataSet only supports", 'error', end='')
            nii_warn.f_die(" output_reso = [1, 1, ... 1]")
        self.m_single_reso = self.m_input_reso[0]
        
        # To make sure that target waveform length is exactly equal
        #  to the up-sampled sequence length
        # self.m_truncate_seq must be changed to be N * up_sample
        if self.m_truncate_seq is not None:
            # assume input resolution is the same
            self.m_truncate_seq = self.f_adjust_len(self.m_truncate_seq)

        # method to load/write raw data
        if data_format == '<f4':
            self.f_load_data = _data_reader
            self.f_length_data = _data_len_reader
            self.f_write_data = lambda x, y: _data_writer(x, y, \
                                                          self.m_wav_sr)
        else:
            nii_warn.f_print("Unsupported dtype %s" % (data_format))
            nii_warn.f_die("Only supports np.float32 <f4")
            
        # check the validity of data
        self.f_check_file_list()
        
        # log down statiscs 
        #  1. length of each data utterance
        #  2. mean / std of feature feature file
        def get_name(stats_path, set_name, file_name):
            tmp = set_name + '_' + file_name
            return os.path.join(stats_path, tmp)
        
        self.m_ms_input_path = get_name(stats_path, self.m_set_name, \
                                        nii_dconf.mean_std_i_file)
        self.m_ms_output_path = get_name(stats_path, self.m_set_name, \
                                         nii_dconf.mean_std_o_file)
        self.m_data_len_path = get_name(stats_path, self.m_set_name, \
                                        nii_dconf.data_len_file)
        
        # initialize data length and mean /std
        flag_cal_len = self.f_init_data_len_stats(self.m_data_len_path)
        flag_cal_mean_std = self.f_init_mean_std(self.m_ms_input_path,
                                                 self.m_ms_output_path)
            
        # if data information is not available, read it again from data
        if flag_cal_len or flag_cal_mean_std:
            self.f_calculate_stats(flag_cal_len, flag_cal_mean_std) 
            
        # check
        if self.__len__() < 1:
            nii_warn.f_print("Fail to load any data", "error")
            nii_warn.f_die("Please check configuration")
        # done
        return                
def f_run_one_epoch_WGAN(
        args, pt_model_G, pt_model_D,
        loss_wrapper, \
        device, monitor,  \
        data_loader, epoch_idx,
        optimizer_G = None, optimizer_D = None, \
        target_norm_method = None):
    """
    f_run_one_epoch_WGAN: 
       similar to f_run_one_epoch_GAN, but for WGAN
    """
    # timer
    start_time = time.time()

    # number of critic (default 5)
    if hasattr(args, "wgan-critic-num"):
        num_critic = args.wgan_critic_num
    else:
        num_critic = 5
    # clip value
    if hasattr(args, "wgan-clamp"):
        wgan_clamp = args.wgan_clamp
    else:
        wgan_clamp = 0.01

    # loop over samples
    for data_idx, (data_in, data_tar, data_info, idx_orig) in \
        enumerate(data_loader):

        # send data to device
        if optimizer_G is not None:
            optimizer_G.zero_grad()
        if optimizer_D is not None:
            optimizer_D.zero_grad()

        # prepare data
        if isinstance(data_tar, torch.Tensor):
            data_tar = data_tar.to(device, dtype=nii_dconf.d_dtype)
            # there is no way to normalize the data inside loss
            # thus, do normalization here
            if target_norm_method is None:
                normed_target = pt_model_G.normalize_target(data_tar)
            else:
                normed_target = target_norm_method(data_tar)
        else:
            nii_display.f_die("target data is required")

        # to device (we assume noise will be generated by the model itself)
        # here we only provide external condition
        data_in = data_in.to(device, dtype=nii_dconf.d_dtype)

        ############################
        # Update Discriminator
        ############################
        # train with real
        pt_model_D.zero_grad()
        d_out_real = pt_model_D(data_tar)
        errD_real = loss_wrapper.compute_gan_D_real(d_out_real)
        if optimizer_D is not None:
            errD_real.backward()
        d_out_real_mean = d_out_real.mean()

        # train with fake
        #  generate sample
        if args.model_forward_with_target:
            # if model.forward requires (input, target) as arguments
            # for example, for auto-encoder & autoregressive model
            if isinstance(data_tar, torch.Tensor):
                data_tar_tm = data_tar.to(device, dtype=nii_dconf.d_dtype)
                if args.model_forward_with_file_name:
                    data_gen = pt_model_G(data_in, data_tar_tm, data_info)
                else:
                    data_gen = pt_model_G(data_in, data_tar_tm)
            else:
                nii_display.f_print("--model-forward-with-target is set")
                nii_display.f_die("but data_tar is not loaded")
        else:
            if args.model_forward_with_file_name:
                # specifcal case when model.forward requires data_info
                data_gen = pt_model_G(data_in, data_info)
            else:
                # normal case for model.forward(input)
                data_gen = pt_model_G(data_in)

        # data_gen.detach() is required
        # https://github.com/pytorch/examples/issues/116
        d_out_fake = pt_model_D(data_gen.detach())
        errD_fake = loss_wrapper.compute_gan_D_fake(d_out_fake)
        if optimizer_D is not None:
            errD_fake.backward()
        d_out_fake_mean = d_out_fake.mean()

        errD = errD_real + errD_fake
        if optimizer_D is not None:
            optimizer_D.step()

        # clip weights of discriminator
        for p in pt_model_D.parameters():
            p.data.clamp_(-wgan_clamp, wgan_clamp)

        ############################
        # Update Generator
        ############################
        pt_model_G.zero_grad()
        d_out_fake_for_G = pt_model_D(data_gen)
        errG_gan = loss_wrapper.compute_gan_G(d_out_fake_for_G)
        errG_aux = loss_wrapper.compute_aux(data_gen, data_tar)
        errG = errG_gan + errG_aux

        # only update after num_crictic iterations on discriminator
        if data_idx % num_critic == 0 and optimizer_G is not None:
            errG.backward()
            optimizer_G.step()

        d_out_fake_for_G_mean = d_out_fake_for_G.mean()

        # construct the loss for logging and early stopping
        # only use errG_aux for early-stopping
        loss_computed = [[
            errG_aux, errG_gan, errD_real, errD_fake, d_out_real_mean,
            d_out_fake_mean, d_out_fake_for_G_mean
        ], [True, False, False, False, False, False, False]]

        # to handle cases where there are multiple loss functions
        loss, loss_vals, loss_flags = nii_nn_tools.f_process_loss(
            loss_computed)

        # save the training process information to the monitor
        end_time = time.time()
        batchsize = len(data_info)
        for idx, data_seq_info in enumerate(data_info):
            # loss_value is supposed to be the average loss value
            # over samples in the the batch, thus, just loss_value
            # rather loss_value / batchsize
            monitor.log_loss(loss_vals, loss_flags, \
                             (end_time-start_time) / batchsize, \
                             data_seq_info, idx_orig.numpy()[idx], \
                             epoch_idx)
            # print infor for one sentence
            if args.verbose == 1:
                monitor.print_error_for_batch(data_idx*batchsize + idx,\
                                              idx_orig.numpy()[idx], \
                                              epoch_idx)
            #
        # start the timer for a new batch
        start_time = time.time()

    # lopp done
    return
def f_train_wrapper_GAN(
        args, pt_model_G, pt_model_D, loss_wrapper, device, \
        optimizer_G_wrapper, optimizer_D_wrapper, \
        train_dataset_wrapper, \
        val_dataset_wrapper = None, \
        checkpoint_G = None, checkpoint_D = None):
    """ 
    f_train_wrapper_GAN(
       args, pt_model_G, pt_model_D, loss_wrapper, device, 
       optimizer_G_wrapper, optimizer_D_wrapper, 
       train_dataset_wrapper, val_dataset_wrapper = None,
       check_point = None):

      A wrapper to run the training process

    Args:
       args:         argument information given by argpase
       pt_model_G:   generator, pytorch model (torch.nn.Module)
       pt_model_D:   discriminator, pytorch model (torch.nn.Module)
       loss_wrapper: a wrapper over loss functions
                     loss_wrapper.compute_D_real(discriminator_output) 
                     loss_wrapper.compute_D_fake(discriminator_output) 
                     loss_wrapper.compute_G(discriminator_output)
                     loss_wrapper.compute_G(fake, real)

       device:       torch.device("cuda") or torch.device("cpu")

       optimizer_G_wrapper: 
           a optimizer wrapper for generator (defined in op_manager.py)
       optimizer_D_wrapper: 
           a optimizer wrapper for discriminator (defined in op_manager.py)
       
       train_dataset_wrapper: 
           a wrapper over training data set (data_io/default_data_io.py)
           train_dataset_wrapper.get_loader() returns torch.DataSetLoader
       
       val_dataset_wrapper: 
           a wrapper over validation data set (data_io/default_data_io.py)
           it can None.
       
       checkpoint_G:
           a check_point that stores every thing to resume training

       checkpoint_D:
           a check_point that stores every thing to resume training
    """

    nii_display.f_print_w_date("Start model training")

    # get the optimizer
    optimizer_G_wrapper.print_info()
    optimizer_D_wrapper.print_info()
    optimizer_G = optimizer_G_wrapper.optimizer
    optimizer_D = optimizer_D_wrapper.optimizer
    epoch_num = optimizer_G_wrapper.get_epoch_num()
    no_best_epoch_num = optimizer_G_wrapper.get_no_best_epoch_num()

    # get data loader for training set
    train_dataset_wrapper.print_info()
    train_data_loader = train_dataset_wrapper.get_loader()
    train_seq_num = train_dataset_wrapper.get_seq_num()

    # get the training process monitor
    monitor_trn = nii_monitor.Monitor(epoch_num, train_seq_num)

    # if validation data is provided, get data loader for val set
    if val_dataset_wrapper is not None:
        val_dataset_wrapper.print_info()
        val_data_loader = val_dataset_wrapper.get_loader()
        val_seq_num = val_dataset_wrapper.get_seq_num()
        monitor_val = nii_monitor.Monitor(epoch_num, val_seq_num)
    else:
        monitor_val = None

    # training log information
    train_log = ''
    model_tags = ["_G", "_D"]

    # prepare for DataParallism if available
    # pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
    if torch.cuda.device_count() > 1 and args.multi_gpu_data_parallel:
        nii_display.f_die("data_parallel not implemented for GAN")
    else:
        nii_display.f_print("Use single GPU: %s" % \
                            (torch.cuda.get_device_name(device)))
        flag_multi_device = False
        normtarget_f = None
    pt_model_G.to(device, dtype=nii_dconf.d_dtype)
    pt_model_D.to(device, dtype=nii_dconf.d_dtype)

    # print the network
    nii_display.f_print("Setup generator")
    f_model_show(pt_model_G)
    nii_display.f_print("Setup discriminator")
    f_model_show(pt_model_D)

    # resume training or initialize the model if necessary
    cp_names = CheckPointKey()
    if checkpoint_G is not None or checkpoint_D is not None:
        for checkpoint, optimizer, pt_model, model_name in \
            zip([checkpoint_G, checkpoint_D], [optimizer_G, optimizer_D],
                [pt_model_G, pt_model_D], ["Generator", "Discriminator"]):
            nii_display.f_print("For %s" % (model_name))
            if type(checkpoint) is dict:
                # checkpoint
                # load model parameter and optimizer state
                if cp_names.state_dict in checkpoint:
                    # wrap the state_dic in f_state_dict_wrapper
                    # in case the model is saved when DataParallel is on
                    pt_model.load_state_dict(
                        nii_nn_tools.f_state_dict_wrapper(
                            checkpoint[cp_names.state_dict],
                            flag_multi_device))
                # load optimizer state
                if cp_names.optimizer in checkpoint:
                    optimizer.load_state_dict(checkpoint[cp_names.optimizer])
                # optionally, load training history
                if not args.ignore_training_history_in_trained_model:
                    #nii_display.f_print("Load ")
                    if cp_names.trnlog in checkpoint:
                        monitor_trn.load_state_dic(checkpoint[cp_names.trnlog])
                    if cp_names.vallog in checkpoint and monitor_val:
                        monitor_val.load_state_dic(checkpoint[cp_names.vallog])
                    if cp_names.info in checkpoint:
                        train_log = checkpoint[cp_names.info]
                    nii_display.f_print("Load check point, resume training")
                else:
                    nii_display.f_print("Load pretrained model and optimizer")
            elif checkpoint is not None:
                # only model status
                #pt_model.load_state_dict(checkpoint)
                pt_model.load_state_dict(
                    nii_nn_tools.f_state_dict_wrapper(checkpoint,
                                                      flag_multi_device))
                nii_display.f_print("Load pretrained model")
            else:
                nii_display.f_print("No pretrained model")

    # done for resume training

    # other variables
    flag_early_stopped = False
    start_epoch = monitor_trn.get_epoch()
    epoch_num = monitor_trn.get_max_epoch()

    if hasattr(loss_wrapper, "flag_wgan") and loss_wrapper.flag_wgan:
        f_wrapper_gan_one_epoch = f_run_one_epoch_WGAN
    else:
        f_wrapper_gan_one_epoch = f_run_one_epoch_GAN

    # print
    _ = nii_op_display_tk.print_log_head()
    nii_display.f_print_message(train_log, flush=True, end='')

    # loop over multiple epochs
    for epoch_idx in range(start_epoch, epoch_num):

        # training one epoch
        pt_model_D.train()
        pt_model_G.train()

        f_wrapper_gan_one_epoch(
            args, pt_model_G, pt_model_D,
            loss_wrapper, device, \
            monitor_trn, train_data_loader, \
            epoch_idx, optimizer_G, optimizer_D,
            normtarget_f)

        time_trn = monitor_trn.get_time(epoch_idx)
        loss_trn = monitor_trn.get_loss(epoch_idx)

        # if necessary, do validataion
        if val_dataset_wrapper is not None:
            # set eval() if necessary
            if args.eval_mode_for_validation:
                pt_model_G.eval()
                pt_model_D.eval()
            with torch.no_grad():
                f_wrapper_gan_one_epoch(
                    args, pt_model_G, pt_model_D,
                    loss_wrapper, \
                    device, \
                    monitor_val, val_data_loader, \
                    epoch_idx, None, None, normtarget_f)
            time_val = monitor_val.get_time(epoch_idx)
            loss_val = monitor_val.get_loss(epoch_idx)
        else:
            time_val, loss_val = 0, 0

        if val_dataset_wrapper is not None:
            flag_new_best = monitor_val.is_new_best()
        else:
            flag_new_best = True

        # print information
        train_log += nii_op_display_tk.print_train_info(
            epoch_idx, time_trn, loss_trn, time_val, loss_val, flag_new_best)

        # save the best model
        if flag_new_best:
            for pt_model, model_tag in \
                zip([pt_model_G, pt_model_D], model_tags):
                tmp_best_name = f_save_trained_name_GAN(args, model_tag)
                torch.save(pt_model.state_dict(), tmp_best_name)

        # save intermediate model if necessary
        if not args.not_save_each_epoch:
            # save model discrminator and generator
            for pt_model, optimizer, model_tag in \
                zip([pt_model_G, pt_model_D], [optimizer_G, optimizer_D],
                    model_tags):

                tmp_model_name = f_save_epoch_name_GAN(args, epoch_idx,
                                                       model_tag)
                if monitor_val is not None:
                    tmp_val_log = monitor_val.get_state_dic()
                else:
                    tmp_val_log = None
                # save
                tmp_dic = {
                    cp_names.state_dict: pt_model.state_dict(),
                    cp_names.info: train_log,
                    cp_names.optimizer: optimizer.state_dict(),
                    cp_names.trnlog: monitor_trn.get_state_dic(),
                    cp_names.vallog: tmp_val_log
                }
                torch.save(tmp_dic, tmp_model_name)
                if args.verbose == 1:
                    nii_display.f_eprint(str(datetime.datetime.now()))
                    nii_display.f_eprint("Save {:s}".format(tmp_model_name),
                                         flush=True)

        # early stopping
        if monitor_val is not None and \
           monitor_val.should_early_stop(no_best_epoch_num):
            flag_early_stopped = True
            break

    # loop done

    nii_op_display_tk.print_log_tail()
    if flag_early_stopped:
        nii_display.f_print("Training finished by early stopping")
    else:
        nii_display.f_print("Training finished")
    nii_display.f_print("Model is saved to", end='')
    for model_tag in model_tags:
        nii_display.f_print("{}".format(
            f_save_trained_name_GAN(args, model_tag)))
    return
def f_run_one_epoch_GAN(
        args, pt_model_G, pt_model_D,
        loss_wrapper, \
        device, monitor,  \
        data_loader, epoch_idx,
        optimizer_G = None, optimizer_D = None, \
        target_norm_method = None):
    """
    f_run_one_epoch_GAN: 
       run one poech over the dataset (for training or validation sets)

    Args:
       args:         from argpase
       pt_model_G:   pytorch model (torch.nn.Module) generator
       pt_model_D:   pytorch model (torch.nn.Module) discriminator
       loss_wrapper: a wrapper over loss function
                     loss_wrapper.compute(generated, target) 
       device:       torch.device("cuda") or torch.device("cpu")
       monitor:      defined in op_procfess_monitor.py
       data_loader:  pytorch DataLoader. 
       epoch_idx:    int, index of the current epoch
       optimizer_G:  torch optimizer or None, for generator
       optimizer_D:  torch optimizer or None, for discriminator
                     if None, the back propgation will be skipped
                     (for developlement set)
       target_norm_method: method to normalize target data
                           (by default, use pt_model.normalize_target)
    """
    # timer
    start_time = time.time()

    # loop over samples
    for data_idx, (data_in, data_tar, data_info, idx_orig) in \
        enumerate(data_loader):

        # send data to device
        if optimizer_G is not None:
            optimizer_G.zero_grad()
        if optimizer_D is not None:
            optimizer_D.zero_grad()

        # prepare data
        if isinstance(data_tar, torch.Tensor):
            data_tar = data_tar.to(device, dtype=nii_dconf.d_dtype)
            # there is no way to normalize the data inside loss
            # thus, do normalization here
            if target_norm_method is None:
                normed_target = pt_model_G.normalize_target(data_tar)
            else:
                normed_target = target_norm_method(data_tar)
        else:
            nii_display.f_die("target data is required")

        # to device (we assume noise will be generated by the model itself)
        # here we only provide external condition
        data_in = data_in.to(device, dtype=nii_dconf.d_dtype)

        ############################
        # Update Discriminator
        ############################
        # train with real
        pt_model_D.zero_grad()
        d_out_real = pt_model_D(data_tar)
        errD_real = loss_wrapper.compute_gan_D_real(d_out_real)
        if optimizer_D is not None:
            errD_real.backward()

        # this should be given by pt_model_D or loss wrapper
        #d_out_real_mean = d_out_real.mean()

        # train with fake
        #  generate sample
        if args.model_forward_with_target:
            # if model.forward requires (input, target) as arguments
            # for example, for auto-encoder & autoregressive model
            if isinstance(data_tar, torch.Tensor):
                data_tar_tm = data_tar.to(device, dtype=nii_dconf.d_dtype)
                if args.model_forward_with_file_name:
                    data_gen = pt_model_G(data_in, data_tar_tm, data_info)
                else:
                    data_gen = pt_model_G(data_in, data_tar_tm)
            else:
                nii_display.f_print("--model-forward-with-target is set")
                nii_display.f_die("but data_tar is not loaded")
        else:
            if args.model_forward_with_file_name:
                # specifcal case when model.forward requires data_info
                data_gen = pt_model_G(data_in, data_info)
            else:
                # normal case for model.forward(input)
                data_gen = pt_model_G(data_in)

        # data_gen.detach() is required
        # https://github.com/pytorch/examples/issues/116
        d_out_fake = pt_model_D(data_gen.detach())
        errD_fake = loss_wrapper.compute_gan_D_fake(d_out_fake)
        if optimizer_D is not None:
            errD_fake.backward()

        errD = errD_real + errD_fake
        if optimizer_D is not None:
            optimizer_D.step()

        ############################
        # Update Generator
        ############################
        pt_model_G.zero_grad()
        d_out_fake_for_G = pt_model_D(data_gen)
        errG_gan = loss_wrapper.compute_gan_G(d_out_fake_for_G)

        # if defined, calculate auxilliart loss
        if hasattr(loss_wrapper, "compute_aux"):
            errG_aux = loss_wrapper.compute_aux(data_gen, data_tar)
        else:
            errG_aux = torch.zeros_like(errG_gan)

        # if defined, calculate feat-matching loss
        if hasattr(loss_wrapper, "compute_feat_match"):
            errG_feat = loss_wrapper.compute_feat_match(
                d_out_real, d_out_fake_for_G)
        else:
            errG_feat = torch.zeros_like(errG_gan)

        # sum loss for generator
        errG = errG_gan + errG_aux + errG_feat

        if optimizer_G is not None:
            errG.backward()
            optimizer_G.step()

        # construct the loss for logging and early stopping
        # only use errG_aux for early-stopping
        loss_computed = [[errG_aux, errD_real, errD_fake, errG_gan, errG_feat],
                         [True, False, False, False, False]]

        # to handle cases where there are multiple loss functions
        _, loss_vals, loss_flags = nii_nn_tools.f_process_loss(loss_computed)

        # save the training process information to the monitor
        end_time = time.time()
        batchsize = len(data_info)
        for idx, data_seq_info in enumerate(data_info):
            # loss_value is supposed to be the average loss value
            # over samples in the the batch, thus, just loss_value
            # rather loss_value / batchsize
            monitor.log_loss(loss_vals, loss_flags, \
                             (end_time-start_time) / batchsize, \
                             data_seq_info, idx_orig.numpy()[idx], \
                             epoch_idx)
            # print infor for one sentence
            if args.verbose == 1:
                monitor.print_error_for_batch(data_idx*batchsize + idx,\
                                              idx_orig.numpy()[idx], \
                                              epoch_idx)
            #
        # start the timer for a new batch
        start_time = time.time()

    # lopp done
    return