示例#1
0
    def print_error_for_batch(self, cnt_idx, seq_idx, epoch_idx):
        try:
            t_1 = self.loss_mat[epoch_idx, seq_idx]
            t_2 = self.time_mat[epoch_idx, seq_idx]

            mes = "{}, ".format(self.seq_names[seq_idx])
            mes += "{:d}/{:d}, ".format(cnt_idx+1, \
                                             self.seq_num)
            mes += "Time: {:.6f}s, Loss: {:.6f}".format(t_2, t_1)
            nii_display.f_eprint(mes, flush=True)
        except IndexError:
            nii_display.f_die("Unknown sample index in Monitor")
        except KeyError:
            nii_display.f_die("Unknown sample index in Monitor")
        return
示例#2
0
def f_train_wrapper(args, pt_model, loss_wrapper, device, \
                    optimizer_wrapper, \
                    train_dataset_wrapper, \
                    val_dataset_wrapper = None, \
                    checkpoint = None):
    """ 
    f_train_wrapper(args, pt_model, loss_wrapper, device, 
                    optimizer_wrapper
                    train_dataset_wrapper, val_dataset_wrapper = None,
                    check_point = None):
      A wrapper to run the training process

    Args:
       args:         argument information given by argpase
       pt_model:     pytorch model (torch.nn.Module)
       loss_wrapper: a wrapper over loss function
                     loss_wrapper.compute(generated, target) 
       device:       torch.device("cuda") or torch.device("cpu")

       optimizer_wrapper: 
           a wrapper over optimizer (defined in op_manager.py)
           optimizer_wrapper.optimizer is torch.optimizer
    
       train_dataset_wrapper: 
           a wrapper over training data set (data_io/default_data_io.py)
           train_dataset_wrapper.get_loader() returns torch.DataSetLoader
       
       val_dataset_wrapper: 
           a wrapper over validation data set (data_io/default_data_io.py)
           it can None.
       
       check_point:
           a check_point that stores every thing to resume training
    """

    nii_display.f_print_w_date("Start model training")

    ##############
    ## Preparation
    ##############

    # get the optimizer
    optimizer_wrapper.print_info()
    optimizer = optimizer_wrapper.optimizer
    lr_scheduler = optimizer_wrapper.lr_scheduler
    epoch_num = optimizer_wrapper.get_epoch_num()
    no_best_epoch_num = optimizer_wrapper.get_no_best_epoch_num()

    # get data loader for training set
    train_dataset_wrapper.print_info()
    train_data_loader = train_dataset_wrapper.get_loader()
    train_seq_num = train_dataset_wrapper.get_seq_num()

    # get the training process monitor
    monitor_trn = nii_monitor.Monitor(epoch_num, train_seq_num)

    # if validation data is provided, get data loader for val set
    if val_dataset_wrapper is not None:
        val_dataset_wrapper.print_info()
        val_data_loader = val_dataset_wrapper.get_loader()
        val_seq_num = val_dataset_wrapper.get_seq_num()
        monitor_val = nii_monitor.Monitor(epoch_num, val_seq_num)
    else:
        monitor_val = None

    # training log information
    train_log = ''

    # prepare for DataParallism if available
    # pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
    if torch.cuda.device_count() > 1 and args.multi_gpu_data_parallel:
        flag_multi_device = True
        nii_display.f_print("\nUse %d GPUs\n" % (torch.cuda.device_count()))
        # no way to call normtarget_f after pt_model is in DataParallel
        normtarget_f = pt_model.normalize_target
        pt_model = nn.DataParallel(pt_model)
    else:
        nii_display.f_print("\nUse single GPU: %s\n" % \
                            (torch.cuda.get_device_name(device)))
        flag_multi_device = False
        normtarget_f = None
    pt_model.to(device, dtype=nii_dconf.d_dtype)

    # print the network
    nii_nn_tools.f_model_show(pt_model)
    nii_nn_tools.f_loss_show(loss_wrapper)

    ###############################
    ## Resume training if necessary
    ###############################
    # resume training or initialize the model if necessary
    cp_names = nii_nn_manage_conf.CheckPointKey()
    if checkpoint is not None:
        if type(checkpoint) is dict:
            # checkpoint

            # load model parameter and optimizer state
            if cp_names.state_dict in checkpoint:
                # wrap the state_dic in f_state_dict_wrapper
                # in case the model is saved when DataParallel is on
                pt_model.load_state_dict(
                    nii_nn_tools.f_state_dict_wrapper(
                        checkpoint[cp_names.state_dict], flag_multi_device))

            # load optimizer state
            if cp_names.optimizer in checkpoint and \
               not args.ignore_optimizer_statistics_in_trained_model:
                optimizer.load_state_dict(checkpoint[cp_names.optimizer])

            # optionally, load training history
            if not args.ignore_training_history_in_trained_model:
                #nii_display.f_print("Load ")
                if cp_names.trnlog in checkpoint:
                    monitor_trn.load_state_dic(checkpoint[cp_names.trnlog])
                if cp_names.vallog in checkpoint and monitor_val:
                    monitor_val.load_state_dic(checkpoint[cp_names.vallog])
                if cp_names.info in checkpoint:
                    train_log = checkpoint[cp_names.info]
                if cp_names.lr_scheduler in checkpoint and \
                   checkpoint[cp_names.lr_scheduler] and lr_scheduler.f_valid():
                    lr_scheduler.f_load_state_dict(
                        checkpoint[cp_names.lr_scheduler])

                nii_display.f_print("Load check point, resume training")
            else:
                nii_display.f_print("Load pretrained model and optimizer")
        else:
            # only model status
            pt_model.load_state_dict(
                nii_nn_tools.f_state_dict_wrapper(checkpoint,
                                                  flag_multi_device))
            nii_display.f_print("Load pretrained model")

    ######################
    ### User defined setup
    ######################
    if hasattr(pt_model, "other_setups"):
        nii_display.f_print("Conduct User-defined setup")
        pt_model.other_setups()

    # This should be merged with other_setups
    if hasattr(pt_model, "g_pretrained_model_path") and \
       hasattr(pt_model, "g_pretrained_model_prefix"):
        nii_display.f_print("Load pret-rained models as part of this mode")
        nii_nn_tools.f_load_pretrained_model_partially(
            pt_model, pt_model.g_pretrained_model_path,
            pt_model.g_pretrained_model_prefix)

    ######################
    ### Start training
    ######################
    # other variables
    flag_early_stopped = False
    start_epoch = monitor_trn.get_epoch()
    epoch_num = monitor_trn.get_max_epoch()

    # print
    _ = nii_op_display_tk.print_log_head()
    nii_display.f_print_message(train_log, flush=True, end='')

    # loop over multiple epochs
    for epoch_idx in range(start_epoch, epoch_num):

        # training one epoch
        pt_model.train()
        # set validation flag if necessary
        if hasattr(pt_model, 'validation'):
            pt_model.validation = False
            mes = "Warning: model.validation is deprecated, "
            mes += "please use model.flag_validation"
            nii_display.f_print(mes, 'warning')
        if hasattr(pt_model, 'flag_validation'):
            pt_model.flag_validation = False

        f_run_one_epoch(args, pt_model, loss_wrapper, device, \
                        monitor_trn, train_data_loader, \
                        epoch_idx, optimizer, normtarget_f)
        time_trn = monitor_trn.get_time(epoch_idx)
        loss_trn = monitor_trn.get_loss(epoch_idx)

        # if necessary, do validataion
        if val_dataset_wrapper is not None:
            # set eval() if necessary
            if args.eval_mode_for_validation:
                pt_model.eval()

            # set validation flag if necessary
            if hasattr(pt_model, 'validation'):
                pt_model.validation = True
                mes = "Warning: model.validation is deprecated, "
                mes += "please use model.flag_validation"
                nii_display.f_print(mes, 'warning')
            if hasattr(pt_model, 'flag_validation'):
                pt_model.flag_validation = True

            with torch.no_grad():
                f_run_one_epoch(args, pt_model, loss_wrapper, \
                                device, \
                                monitor_val, val_data_loader, \
                                epoch_idx, None, normtarget_f)
            time_val = monitor_val.get_time(epoch_idx)
            loss_val = monitor_val.get_loss(epoch_idx)

            # update lr rate scheduler if necessary
            if lr_scheduler.f_valid():
                lr_scheduler.f_step(loss_val)

        else:
            time_val, loss_val = 0, 0

        if val_dataset_wrapper is not None:
            flag_new_best = monitor_val.is_new_best()
        else:
            flag_new_best = True

        # print information
        train_log += nii_op_display_tk.print_train_info(
            epoch_idx, time_trn, loss_trn, time_val, loss_val, flag_new_best,
            optimizer_wrapper.get_lr_info())

        # save the best model
        if flag_new_best:
            tmp_best_name = nii_nn_tools.f_save_trained_name(args)
            torch.save(pt_model.state_dict(), tmp_best_name)

        # save intermediate model if necessary
        if not args.not_save_each_epoch:
            tmp_model_name = nii_nn_tools.f_save_epoch_name(args, epoch_idx)

            if monitor_val is not None:
                tmp_val_log = monitor_val.get_state_dic()
            else:
                tmp_val_log = None

            if lr_scheduler.f_valid():
                lr_scheduler_state = lr_scheduler.f_state_dict()
            else:
                lr_scheduler_state = None

            # save
            tmp_dic = {
                cp_names.state_dict: pt_model.state_dict(),
                cp_names.info: train_log,
                cp_names.optimizer: optimizer.state_dict(),
                cp_names.trnlog: monitor_trn.get_state_dic(),
                cp_names.vallog: tmp_val_log,
                cp_names.lr_scheduler: lr_scheduler_state
            }
            torch.save(tmp_dic, tmp_model_name)
            if args.verbose == 1:
                nii_display.f_eprint(str(datetime.datetime.now()))
                nii_display.f_eprint("Save {:s}".format(tmp_model_name),
                                     flush=True)

        # Early stopping
        #  note: if LR scheduler is used, early stopping will be
        #  disabled
        if lr_scheduler.f_allow_early_stopping() and \
           monitor_val is not None and \
           monitor_val.should_early_stop(no_best_epoch_num):
            flag_early_stopped = True
            break

    # loop done
    nii_op_display_tk.print_log_tail()
    if flag_early_stopped:
        nii_display.f_print("Training finished by early stopping")
    else:
        nii_display.f_print("Training finished")
    nii_display.f_print("Model is saved to", end='')
    nii_display.f_print("{}".format(nii_nn_tools.f_save_trained_name(args)))
    return
def f_train_wrapper(args, pt_model, loss_wrapper, device, \
                    optimizer_wrapper, \
                    train_dataset_wrapper, \
                    val_dataset_wrapper = None, \
                    checkpoint = None):
    """ 
    f_train_wrapper(args, pt_model, loss_wrapper, device, 
                    optimizer_wrapper
                    train_dataset_wrapper, val_dataset_wrapper = None,
                    check_point = None):
      A wrapper to run the training process

    Args:
       args:         argument information given by argpase
       pt_model:     pytorch model (torch.nn.Module)
       loss_wrapper: a wrapper over loss function
                     loss_wrapper.compute(generated, target) 
       device:       torch.device("cuda") or torch.device("cpu")

       optimizer_wrapper: 
           a wrapper over optimizer (defined in op_manager.py)
           optimizer_wrapper.optimizer is torch.optimizer
    
       train_dataset_wrapper: 
           a wrapper over training data set (data_io/default_data_io.py)
           train_dataset_wrapper.get_loader() returns torch.DataSetLoader
       
       val_dataset_wrapper: 
           a wrapper over validation data set (data_io/default_data_io.py)
           it can None.
       
       check_point:
           a check_point that stores every thing to resume training
    """

    nii_display.f_print_w_date("Start model training")

    # get the optimizer
    optimizer_wrapper.print_info()
    optimizer = optimizer_wrapper.optimizer
    epoch_num = optimizer_wrapper.get_epoch_num()
    no_best_epoch_num = optimizer_wrapper.get_no_best_epoch_num()

    # get data loader for training set
    train_dataset_wrapper.print_info()
    train_data_loader = train_dataset_wrapper.get_loader()
    train_seq_num = train_dataset_wrapper.get_seq_num()

    # get the training process monitor
    monitor_trn = nii_monitor.Monitor(epoch_num, train_seq_num)

    # if validation data is provided, get data loader for val set
    if val_dataset_wrapper is not None:
        val_dataset_wrapper.print_info()
        val_data_loader = val_dataset_wrapper.get_loader()
        val_seq_num = val_dataset_wrapper.get_seq_num()
        monitor_val = nii_monitor.Monitor(epoch_num, val_seq_num)
    else:
        monitor_val = None

    # training log information
    train_log = ''

    # print the network
    pt_model.to(device, dtype=nii_dconf.d_dtype)
    f_model_show(pt_model)

    # resume training or initialize the model if necessary
    cp_names = CheckPointKey()
    if checkpoint is not None:
        if type(checkpoint) is dict:
            # checkpoint
            if cp_names.state_dict in checkpoint:
                pt_model.load_state_dict(checkpoint[cp_names.state_dict])
            if cp_names.optimizer in checkpoint:
                optimizer.load_state_dict(checkpoint[cp_names.optimizer])
            if cp_names.trnlog in checkpoint:
                monitor_trn.load_state_dic(checkpoint[cp_names.trnlog])
            if cp_names.vallog in checkpoint and monitor_val:
                monitor_val.load_state_dic(checkpoint[cp_names.vallog])
            if cp_names.info in checkpoint:
                train_log = checkpoint[cp_names.info]
            nii_display.f_print("Load check point and resume training")
        else:
            # only model status
            pt_model.load_state_dict(checkpoint)
            nii_display.f_print("Load pre-trained model")

    # other variables
    flag_early_stopped = False
    start_epoch = monitor_trn.get_epoch()
    epoch_num = monitor_trn.get_max_epoch()

    # print
    _ = nii_op_display_tk.print_log_head()
    nii_display.f_print_message(train_log, flush=True, end='')

    # loop over multiple epochs
    for epoch_idx in range(start_epoch, epoch_num):

        # training one epoch
        pt_model.train()
        f_run_one_epoch(args, pt_model, loss_wrapper, device, \
                        monitor_trn, train_data_loader, \
                        epoch_idx, optimizer)
        time_trn = monitor_trn.get_time(epoch_idx)
        loss_trn = monitor_trn.get_loss(epoch_idx)

        # if necessary, do validataion
        if val_dataset_wrapper is not None:
            # set eval() if necessary
            if args.eval_mode_for_validation:
                pt_model.eval()
            with torch.no_grad():
                f_run_one_epoch(args, pt_model, loss_wrapper, \
                                device, \
                                monitor_val, val_data_loader, \
                                epoch_idx, None)
            time_val = monitor_val.get_time(epoch_idx)
            loss_val = monitor_val.get_loss(epoch_idx)
        else:
            time_val, loss_val = 0, 0

        if val_dataset_wrapper is not None:
            flag_new_best = monitor_val.is_new_best()
        else:
            flag_new_best = True

        # print information
        train_log += nii_op_display_tk.print_train_info(epoch_idx, \
                                                        time_trn, \
                                                        loss_trn, \
                                                        time_val, \
                                                        loss_val, \
                                                        flag_new_best)
        # save the best model
        if flag_new_best:
            tmp_best_name = f_save_trained_name(args)
            torch.save(pt_model.state_dict(), tmp_best_name)

        # save intermediate model if necessary
        if not args.not_save_each_epoch:
            tmp_model_name = f_save_epoch_name(args, epoch_idx)
            if monitor_val is not None:
                tmp_val_log = monitor_val.get_state_dic()
            else:
                tmp_val_log = None
            # save
            tmp_dic = {
                cp_names.state_dict: pt_model.state_dict(),
                cp_names.info: train_log,
                cp_names.optimizer: optimizer.state_dict(),
                cp_names.trnlog: monitor_trn.get_state_dic(),
                cp_names.vallog: tmp_val_log
            }
            torch.save(tmp_dic, tmp_model_name)
            if args.verbose == 1:
                nii_display.f_eprint(str(datetime.datetime.now()))
                nii_display.f_eprint("Save {:s}".format(tmp_model_name),
                                     flush=True)

        # early stopping
        if monitor_val is not None and \
           monitor_val.should_early_stop(no_best_epoch_num):
            flag_early_stopped = True
            break

    # loop done
    nii_op_display_tk.print_log_tail()
    if flag_early_stopped:
        nii_display.f_print("Training finished by early stopping")
    else:
        nii_display.f_print("Training finished")
    nii_display.f_print("Model is saved to", end='')
    nii_display.f_print("{}".format(f_save_trained_name(args)))
    return
def f_train_wrapper_GAN(
        args, pt_model_G, pt_model_D, loss_wrapper, device, \
        optimizer_G_wrapper, optimizer_D_wrapper, \
        train_dataset_wrapper, \
        val_dataset_wrapper = None, \
        checkpoint_G = None, checkpoint_D = None):
    """ 
    f_train_wrapper_GAN(
       args, pt_model_G, pt_model_D, loss_wrapper, device, 
       optimizer_G_wrapper, optimizer_D_wrapper, 
       train_dataset_wrapper, val_dataset_wrapper = None,
       check_point = None):

      A wrapper to run the training process

    Args:
       args:         argument information given by argpase
       pt_model_G:   generator, pytorch model (torch.nn.Module)
       pt_model_D:   discriminator, pytorch model (torch.nn.Module)
       loss_wrapper: a wrapper over loss functions
                     loss_wrapper.compute_D_real(discriminator_output) 
                     loss_wrapper.compute_D_fake(discriminator_output) 
                     loss_wrapper.compute_G(discriminator_output)
                     loss_wrapper.compute_G(fake, real)

       device:       torch.device("cuda") or torch.device("cpu")

       optimizer_G_wrapper: 
           a optimizer wrapper for generator (defined in op_manager.py)
       optimizer_D_wrapper: 
           a optimizer wrapper for discriminator (defined in op_manager.py)
       
       train_dataset_wrapper: 
           a wrapper over training data set (data_io/default_data_io.py)
           train_dataset_wrapper.get_loader() returns torch.DataSetLoader
       
       val_dataset_wrapper: 
           a wrapper over validation data set (data_io/default_data_io.py)
           it can None.
       
       checkpoint_G:
           a check_point that stores every thing to resume training

       checkpoint_D:
           a check_point that stores every thing to resume training
    """

    nii_display.f_print_w_date("Start model training")

    # get the optimizer
    optimizer_G_wrapper.print_info()
    optimizer_D_wrapper.print_info()
    optimizer_G = optimizer_G_wrapper.optimizer
    optimizer_D = optimizer_D_wrapper.optimizer
    epoch_num = optimizer_G_wrapper.get_epoch_num()
    no_best_epoch_num = optimizer_G_wrapper.get_no_best_epoch_num()

    # get data loader for training set
    train_dataset_wrapper.print_info()
    train_data_loader = train_dataset_wrapper.get_loader()
    train_seq_num = train_dataset_wrapper.get_seq_num()

    # get the training process monitor
    monitor_trn = nii_monitor.Monitor(epoch_num, train_seq_num)

    # if validation data is provided, get data loader for val set
    if val_dataset_wrapper is not None:
        val_dataset_wrapper.print_info()
        val_data_loader = val_dataset_wrapper.get_loader()
        val_seq_num = val_dataset_wrapper.get_seq_num()
        monitor_val = nii_monitor.Monitor(epoch_num, val_seq_num)
    else:
        monitor_val = None

    # training log information
    train_log = ''
    model_tags = ["_G", "_D"]

    # prepare for DataParallism if available
    # pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
    if torch.cuda.device_count() > 1 and args.multi_gpu_data_parallel:
        nii_display.f_die("data_parallel not implemented for GAN")
    else:
        nii_display.f_print("Use single GPU: %s" % \
                            (torch.cuda.get_device_name(device)))
        flag_multi_device = False
        normtarget_f = None
    pt_model_G.to(device, dtype=nii_dconf.d_dtype)
    pt_model_D.to(device, dtype=nii_dconf.d_dtype)

    # print the network
    nii_display.f_print("Setup generator")
    f_model_show(pt_model_G)
    nii_display.f_print("Setup discriminator")
    f_model_show(pt_model_D)

    # resume training or initialize the model if necessary
    cp_names = CheckPointKey()
    if checkpoint_G is not None or checkpoint_D is not None:
        for checkpoint, optimizer, pt_model, model_name in \
            zip([checkpoint_G, checkpoint_D], [optimizer_G, optimizer_D],
                [pt_model_G, pt_model_D], ["Generator", "Discriminator"]):
            nii_display.f_print("For %s" % (model_name))
            if type(checkpoint) is dict:
                # checkpoint
                # load model parameter and optimizer state
                if cp_names.state_dict in checkpoint:
                    # wrap the state_dic in f_state_dict_wrapper
                    # in case the model is saved when DataParallel is on
                    pt_model.load_state_dict(
                        nii_nn_tools.f_state_dict_wrapper(
                            checkpoint[cp_names.state_dict],
                            flag_multi_device))
                # load optimizer state
                if cp_names.optimizer in checkpoint:
                    optimizer.load_state_dict(checkpoint[cp_names.optimizer])
                # optionally, load training history
                if not args.ignore_training_history_in_trained_model:
                    #nii_display.f_print("Load ")
                    if cp_names.trnlog in checkpoint:
                        monitor_trn.load_state_dic(checkpoint[cp_names.trnlog])
                    if cp_names.vallog in checkpoint and monitor_val:
                        monitor_val.load_state_dic(checkpoint[cp_names.vallog])
                    if cp_names.info in checkpoint:
                        train_log = checkpoint[cp_names.info]
                    nii_display.f_print("Load check point, resume training")
                else:
                    nii_display.f_print("Load pretrained model and optimizer")
            elif checkpoint is not None:
                # only model status
                #pt_model.load_state_dict(checkpoint)
                pt_model.load_state_dict(
                    nii_nn_tools.f_state_dict_wrapper(checkpoint,
                                                      flag_multi_device))
                nii_display.f_print("Load pretrained model")
            else:
                nii_display.f_print("No pretrained model")

    # done for resume training

    # other variables
    flag_early_stopped = False
    start_epoch = monitor_trn.get_epoch()
    epoch_num = monitor_trn.get_max_epoch()

    if hasattr(loss_wrapper, "flag_wgan") and loss_wrapper.flag_wgan:
        f_wrapper_gan_one_epoch = f_run_one_epoch_WGAN
    else:
        f_wrapper_gan_one_epoch = f_run_one_epoch_GAN

    # print
    _ = nii_op_display_tk.print_log_head()
    nii_display.f_print_message(train_log, flush=True, end='')

    # loop over multiple epochs
    for epoch_idx in range(start_epoch, epoch_num):

        # training one epoch
        pt_model_D.train()
        pt_model_G.train()

        f_wrapper_gan_one_epoch(
            args, pt_model_G, pt_model_D,
            loss_wrapper, device, \
            monitor_trn, train_data_loader, \
            epoch_idx, optimizer_G, optimizer_D,
            normtarget_f)

        time_trn = monitor_trn.get_time(epoch_idx)
        loss_trn = monitor_trn.get_loss(epoch_idx)

        # if necessary, do validataion
        if val_dataset_wrapper is not None:
            # set eval() if necessary
            if args.eval_mode_for_validation:
                pt_model_G.eval()
                pt_model_D.eval()
            with torch.no_grad():
                f_wrapper_gan_one_epoch(
                    args, pt_model_G, pt_model_D,
                    loss_wrapper, \
                    device, \
                    monitor_val, val_data_loader, \
                    epoch_idx, None, None, normtarget_f)
            time_val = monitor_val.get_time(epoch_idx)
            loss_val = monitor_val.get_loss(epoch_idx)
        else:
            time_val, loss_val = 0, 0

        if val_dataset_wrapper is not None:
            flag_new_best = monitor_val.is_new_best()
        else:
            flag_new_best = True

        # print information
        train_log += nii_op_display_tk.print_train_info(
            epoch_idx, time_trn, loss_trn, time_val, loss_val, flag_new_best)

        # save the best model
        if flag_new_best:
            for pt_model, model_tag in \
                zip([pt_model_G, pt_model_D], model_tags):
                tmp_best_name = f_save_trained_name_GAN(args, model_tag)
                torch.save(pt_model.state_dict(), tmp_best_name)

        # save intermediate model if necessary
        if not args.not_save_each_epoch:
            # save model discrminator and generator
            for pt_model, optimizer, model_tag in \
                zip([pt_model_G, pt_model_D], [optimizer_G, optimizer_D],
                    model_tags):

                tmp_model_name = f_save_epoch_name_GAN(args, epoch_idx,
                                                       model_tag)
                if monitor_val is not None:
                    tmp_val_log = monitor_val.get_state_dic()
                else:
                    tmp_val_log = None
                # save
                tmp_dic = {
                    cp_names.state_dict: pt_model.state_dict(),
                    cp_names.info: train_log,
                    cp_names.optimizer: optimizer.state_dict(),
                    cp_names.trnlog: monitor_trn.get_state_dic(),
                    cp_names.vallog: tmp_val_log
                }
                torch.save(tmp_dic, tmp_model_name)
                if args.verbose == 1:
                    nii_display.f_eprint(str(datetime.datetime.now()))
                    nii_display.f_eprint("Save {:s}".format(tmp_model_name),
                                         flush=True)

        # early stopping
        if monitor_val is not None and \
           monitor_val.should_early_stop(no_best_epoch_num):
            flag_early_stopped = True
            break

    # loop done

    nii_op_display_tk.print_log_tail()
    if flag_early_stopped:
        nii_display.f_print("Training finished by early stopping")
    else:
        nii_display.f_print("Training finished")
    nii_display.f_print("Model is saved to", end='')
    for model_tag in model_tags:
        nii_display.f_print("{}".format(
            f_save_trained_name_GAN(args, model_tag)))
    return