示例#1
0
 def test_safe_indexing(self):
     npt.assert_array_equal(
         safe_indexing(np.asarray([3, 2, 1]), np.asarray([1, 2])),
         np.asarray([2, 1]))
     npt.assert_array_equal(safe_indexing(np.asarray([3, 2, 1]), [1, 2]),
                            np.asarray([2, 1]))
     self.assertListEqual(safe_indexing([3, 2, 1], [1, 2]), [2, 1])
示例#2
0
def test_safe_indexing():
    assert all([
        a == b for a, b in zip(
            safe_indexing(np.asarray([3, 2, 1]), np.asarray([1, 2])),
            np.asarray([2, 1]))
    ])
    assert all([
        a == b for a, b in zip(safe_indexing(np.asarray([3, 2, 1]), [1, 2]),
                               np.asarray([2, 1]))
    ])
    assert all(
        [a == b for a, b in zip(safe_indexing([3, 2, 1], [1, 2]), [2, 1])])
    def _split(self):
        data_idx = self.rng.permutation(len(self._data))
        train_idx = data_idx[:self.train_size]
        test_idx = data_idx[-self.test_size:]
        val_idx = data_idx[self.train_size:-self.test_size]

        train_data = safe_indexing(self._data, train_idx)
        test_data = safe_indexing(self._data, test_idx)
        val_data = safe_indexing(self._data, val_idx) if len(
            val_idx) > 0 else None

        self._build_stratified_datasets(train_data=train_data,
                                        test_data=test_data,
                                        val_data=val_data)