def process(): for i, (sent, meta) in enumerate( Conllu.load(corpus) if isinstance(corpus, str) else corpus): tag_brat_len = len(TAG_BRAT) for token in sent: misc = token['MISC'] ne = None ne_excess = set() for feat, val in misc.items(): if feat.startswith(TAG_BRAT) and val == 'Yes': if ne: warnings.warn( 'Multiple brat entities in sent ' '{} (sent_id = {}), token {} ("{}"):'.format( i, meta['sent_id'], token['ID'], token['FORM']) + ': Entities {} and {}. Ignore the last one'. format(ne, feat)) ne_excess.add(feat) else: ne = feat if ne: for ne_ in [ne] + list(ne_excess): misc.pop(ne_) misc[TAG_NE] = ne[tag_brat_len:] yield sent, meta
def process(): for i, (sent, meta) in enumerate( Conllu.load(corpus) if isinstance(corpus, str) else corpus): for token in sent: misc = token['MISC'] ne = None ne_excess = set() for feat, val in misc.items(): if feat.startswith(TAG): if ne and ne != val: warnings.warn( 'Multiple brat entities in sent ' '{} (sent_id = {}), token {} ("{}"):'.format( i, meta['sent_id'], token['ID'], token['FORM']) + ': Entities {} and {}. Ignore the last one'. format(ne, val)) else: ne = val ne_excess.add(feat) if ne: if not keep_originals: for ne_ in list(ne_excess): misc.pop(ne_) misc[TAG_NE] = ne yield sent, meta
def process(): for sent, meta in Conllu.load(corpus) \ if isinstance(corpus, str) else \ corpus: meta.pop('text', None) sent_ = [] tags = [] for token in sent: misc = token['MISC'] if token['FORM'] is None: if TAGS_BRAT[0] in misc: if TAGS_BRAT[0] not in tags: tags.append(misc[TAGS_BRAT[0]]) elif TAGS_BRAT[1] in misc: try: tags.remove(misc[TAGS_BRAT[1]]) except: pass if sent_ and 'SpaceAfter' in misc: sent_[-1]['MISC']['SpaceAfter'] = misc[ 'SpaceAfter'] else: sent_.append(token) else: for tag in tags: misc[TAG_BRAT + tag] = 'Yes' sent_.append(token) yield sent_, meta
def load_conllu(*args, **kwargs): """Wrapper for ``Conllu.load()``""" silent = kwargs.pop('silent', None) if silent: kwargs['log_file'] = None elif 'log_file' not in kwargs: kwargs['log_file'] = LOG_FILE return Conllu.load(*args, **kwargs)
def split_corpus(corpus, split=[.8, .1, .1], save_split_to=None, seed=None, silent=False): """Split a *corpus* in the given proportion. :param corpus: a name of file in CoNLL-U format or list/iterator of sentences in Parsed CoNLL-U :param split: list of sizes of the necessary *corpus* parts. If values are of int type, they are interpreted as lengths of new corpora in sentences; if values are float, they are proportions of a given *corpus*. The types of the *split* values can't be mixed: they are either all int, or all float. The sum of float values must be less or equals to 1; the sum of int values can't be greater than the lentgh of the *corpus* :param save_split_to: list of file names to save the result of the *corpus* splitting. Can be `None` (default; don't save parts to files) or its length must be equal to the length of *split* :param silent: if True, suppress output :return: a list of new corpora """ assert save_split_to is None or len(save_split_to) == len(split), \ 'ERROR: lengths of split and save_split_to must be equal' isfloat = len([x for x in split if isinstance(x, float)]) > 0 if isfloat: assert sum(split) <= 1, \ "ERROR: sum of split can't be greater that 1" corpus = list( Conllu.load(corpus, log_file=None if silent else LOG_FILE)) corpus_len = len(corpus) if isfloat: split = list(map(lambda x: round(corpus_len * x), split)) diff = corpus_len - sum(split) if abs(diff) == 1: split[-1] += diff assert sum(split) <= corpus_len, \ "ERROR: sum of split can't be greater that corpus length" random.seed(seed) random.shuffle(corpus) res = [] pos_b = 0 for i, sp in enumerate(split): pos_e = pos_b + sp corpus_ = corpus[pos_b:pos_e] pos_b = pos_e if save_split_to: Conllu.save(corpus_, save_split_to[i]) res.append(corpus_) return res
def get_conllu_fields(corpus=None, fields=None, word2idx=None, unk_token=None, with_empty=False, silent=False): """Split corpus in CoNLL-U format to separate lists of tokens and tags. :param corpus: the corpus in CoNLL-U or Parsed CoNLL-U format. :param fields: list of CoNLL-U fields but 'FORM' to extract. :type fields: list :param word2idx: Word to Index dict. If not None, all words not from dict will be skipped or replacet to *unk_token* :type word2idx: dict({word: int}) :param unk_token: replacement for tokens that are not present in *word2idx*. :type unk_token: str :param with_empty: don't skip empty sentences. :param silent: suppress output. :return: splitted corpus :rtype: tuple(list([list([str|OrderedDict])])) """ if fields is None: fields = [] if isinstance(corpus, str): corpus = Conllu.load(corpus, **({'log_file': None} if silent else {})) elif callable(corpus): corpus = corpus() sents = tuple([] for _ in range(len(fields) + 1)) for sent in corpus: if isinstance(sent, tuple): sent = sent[0] for i, field in enumerate( zip(*[(x['FORM'] if not word2idx or x['FORM'] in word2idx else unk_token, *[ x[y[0]].get(y[1], y[2]) if len(y) >= 3 else x[y[0]]. get(y[1]) if len(y) == 2 else x[y[0]] for y in [y.split(':') for y in fields] ]) for x in sent if x['FORM'] and '-' not in x['ID'] and (not word2idx or x['FORM'] in word2idx or unk_token)])): if field or with_empty: sents[i].append(field) return sents if fields else sents[0]
def embed_conllu_fields(corpus, fields, values, empties=None, nones=None, silent=False): if isinstance(corpus, str): corpus = Conllu.load(corpus, **({'log_file': None} if silent else {})) elif callable(corpus): corpus = corpus() if empties: for i in empties: values.insert(i, []) if nones: for i, j in nones: values[i].insert(j, None) for sentence, vals in zip(corpus, values): sent = sentence[0] if isinstance(sentence, tuple) else sentence for token, val in zip(sent, vals): for field, val_ in [[fields, val]] \ if isinstance(fields, str) else \ zip(fields, val): field = field.split(':') if val_ is not None: if len(field) >= 2: if len(field) >= 3 and val_ == field[2]: if field[1]: token[field[0]].pop(field[1], None) else: token[field[0]] = None else: if field[1]: token[field[0]][field[1]] = val_ else: token[field[0]] = val_ else: token[field[0]] = val_ yield sentence
#-*- encoding: utf-8 -*- from copy import deepcopy from corpuscula import Conllu import glob import os from pathlib import Path CONLL_DIR = r'C:\prj-git\_mine\ru_corner\_data\conll\newswire' EDITED_DIR = '_0' TOKEN = '%' for fn in glob.glob(CONLL_DIR + '/*/*.txt', recursive=True): print(fn) corpus = list(Conllu.load(fn)) end_spaces = [] for sentence in corpus: sent, meta = sentence if 'par_text' in meta: parts = meta['par_text'].split(TOKEN) end_spaces = [x[-1:] == ' ' for x in parts[:-1]] if not end_spaces: continue if 'text' not in meta: continue parts = meta['text'].split(TOKEN)
#!/usr/bin/python -u #-*- encoding: utf-8 -*- from copy import deepcopy from corpuscula import Conllu import glob import os from pathlib import Path DIR = r'C:\prj-git\_mine\ru_corner\_data\conll\newswire' TOKEN = '%' log = open('_splitted', 'wt', encoding='utf-8') parent_fn = None for fn in glob.glob(DIR + '/*/*.txt', recursive=True): corpus = list(Conllu.load(fn, fix=False, log_file=None)) path = Path(fn) for idx, sentence in enumerate(corpus): sent, meta = sentence prev_id = None for idx_, tok in enumerate(sent): id_ = tok['ID'] if id_ == prev_id: if parent_fn and parent_fn != fn: print(file=log) parent_fn = fn print('{} ({}) - {} : {} / {} "{} {}"' .format(meta['sent_id'], idx, id_, path.parent.name, path.name,
def extract_conllu_fields(corpus, fields=None, word2idx=None, unk_token=None, with_empty=False, return_nones=False, silent=False): """Split corpus in CoNLL-U format to separate lists of tokens and tags. :param corpus: the corpus in CoNLL-U or Parsed CoNLL-U format. :param fields: list of CoNLL-U fields but 'FORM' to extract. :type fields: list|str :param word2idx: Word to Index dict. If not None, all words not from dict will be skipped or replacet to *unk_token* :type word2idx: dict({word: int}) :param unk_token: replacement for tokens that are not present in *word2idx*. :type unk_token: str :param with_empty: don't skip empty sentences. :param silent: suppress output. :param return_nones: return indexes of filtered sentences and tokens :return: splitted corpus :rtype: tuple(list([list([str|OrderedDict])])), [ list([<empty sent idx]), list([tuple(<empty token sent idx>, <empty token idx>)]) ] """ if fields is None: fields = [] elif isinstance(fields, str): fields = [fields] if isinstance(corpus, str): corpus = Conllu.load(corpus, **({'log_file': None} if silent else {})) elif callable(corpus): corpus = corpus() sents = tuple([] for _ in range(len(fields) + 1)) empties, nones = [], [] for i, sent in enumerate(corpus): if isinstance(sent, tuple): sent = sent[0] isempty = True for j, field in enumerate( zip(*[(x['FORM'] if not word2idx or x['FORM'] in word2idx else unk_token, *[ x[y[0]].get(y[1], y[2]) if len(y) >= 3 and y[1] else x[y[0]].get(y[1]) if len(y) == 2 else x[y[0]] or y[2] if len(y) >= 3 else x[y[0]] for y in [y.split(':') for y in fields] ]) for x in sent if x['FORM'] and '-' not in x['ID'] and (not word2idx or x['FORM'] in word2idx or unk_token)])): sents[j].append(field) isempty = False if isempty and return_nones: empties.append(i) if return_nones: for j, x in enumerate(sent): if not (x['FORM'] and '-' not in x['ID'] and (not word2idx or x['FORM'] in word2idx or unk_token)): nones.append((i, j)) return (*sents, *((empties, nones) if return_nones else [])) \ if fields or return_nones else \ sents[0]
def conllu_to_brat(corpus, txt_fn, ann_fn=None, spaces=3, short_spaces=1): """Converts *corpus* in CoNLL-U format to txt and ann files used by brat. :param txt_fn: a path to the brat txt file. :param ann_fn: a path to the brat ann file. If ``None`` (default), an extension of *txt_fn* file will be changed to '.ann'. :param save_to: a path where result will be stored. If ``None`` (default), the function returns the result as a generator of Parsed CoNLL-U data. :param spaces: number of spaces to use as word delimiter. :param short_spaces: number of spaces to use as word delimiter inside multi-tokens (when ID field has a hyphen inside). Note, that we create empty `.ann` files. Use this function to get initial data for annotation.""" fn, fe = os.path.splitext(txt_fn) if fe != '.txt': print('WARNING: Extension of txt_fn must be ".txt"', file=sys.stderr) if ann_fn is None: ann_fn = fn + '.ann' _, fe = os.path.splitext(ann_fn) if fe != '.ann': print('WARNING: Extension of ann_fn must be ".ann"', file=sys.stderr) with io.open(txt_fn, 'wt', encoding='utf-8', newline='\n') as out_f, \ open(ann_fn, 'w'): for sent_no, sent in enumerate( Conllu.load(corpus, fix=False, log_file=None)): if sent_no: print(file=out_f) if 'newpar id' in sent[1]: print(file=out_f) is_next = None short_start = short_end = None for tok in sent[0]: id_, form, misc = tok['ID'], tok['FORM'], tok['MISC'] if '.' in id_: continue if '-' in id_: short_start, short_end, *_ = id_.split('-') continue if is_next: print(' ' * (short_spaces if short_end and not short_start else spaces), end='', file=out_f) has_entity = False for feat, value in misc.items(): if feat.startswith('Entity'): assert not has_entity # workaround because brat can't display emojies # correctly form = '[emo]' if feat == 'EntityEmoji' else value has_entity = True is_next = True if short_end: short_start = None if id_ == short_end: short_end = None print(form, end='', file=out_f)
def process(): def unmask(text): return text.replace(r'\{}'.format(BRAT_TEXT_BOUND_START_MARK[-1]), BRAT_TEXT_BOUND_START_MARK[-1]) \ .replace(r'\{}'.format(SEP1), SEP1) \ .replace('__', ' ').replace(r'\_', '_') for sent, meta in Conllu.load(corpus) \ if isinstance(corpus, str) else \ corpus: meta.pop('text', None) if 'par_text' in meta: meta['par_text'] = RE_BRAT.sub('', meta['par_text']) sent_ = [] anns = [] for token in sent: misc = token['MISC'] if token['FORM'] is None: if BRAT_START_TAG in misc: assert BRAT_START_TAG not in anns assert misc[BRAT_START_TAG][0] == 'T', \ 'ERROR: Invalid annotation type "{}"' \ .format(misc[BRAT_START_TAG]) anns.append(misc[BRAT_START_TAG]) elif BRAT_END_TAG in misc: anns_ = [] for ann in anns: prefix = misc[BRAT_END_TAG] + SEP2 anns = list( filter(lambda x: not x.startswith(prefix), anns)) try: tags.remove(misc[BRAT_END_TAG]) except: pass if sent_ and 'SpaceAfter' in misc: sent_[-1]['MISC']['SpaceAfter'] = \ misc['SpaceAfter'] else: sent_.append(token) else: for ann in anns: ann = ann.split(SEP1 + SEP1) entity, ann_ = ann[0], ann[1:] tid, name = entity.split(SEP2) assert tid.startswith('T'), \ 'ERROR: Unrecognized annotation {}'.format(ann) misc[BRAT_TAG + tid] = name for ann in ann_: if ann.startswith('R'): ann_id, name, role = ann.split(SEP2) misc[BRAT_TAG + ann_id] = \ tid + SEP3 + name + SEP3 + role elif ann.startswith('*'): ann_id, name = ann.split(SEP2) misc[BRAT_TAG + ann_id] = tid + SEP3 + name elif ann.startswith('E'): ann_id, name, role = ann.split(SEP2) val = tid + SEP3 + name if role: val += SEP3 + role misc[BRAT_TAG + ann_id] = val elif ann.startswith('A'): ann_id, name, value = ann.split(SEP2) val = tid + SEP3 + name if value: val += SEP3 + value misc[BRAT_TAG + ann_id] = val elif ann.startswith('N'): ann_id, service_name, service_id, title = \ ann.split(SEP2, maxsplit=3) misc[BRAT_TAG + ann_id] = \ tid + SEP3 + service_name \ + SEP3 + service_id + SEP3 + unmask(title) elif ann.startswith('#'): ann_id, note = ann.split(SEP2, maxsplit=1) misc[BRAT_TAG + ann_id] = \ tid + SEP3 + unmask(note) else: raise ValueError('ERROR: Unknown annotation ' 'type') #misc[BRAT_TAG + ann] = 'Yes' sent_.append(token) yield sent_, meta