def test_task_api( printer: Callable, client: cx.Client, api: str, deploy_timeout: int = None, job_timeout: int = None, retry_attempts: int = 0, api_config_name: str = "cortex.yaml", ): api_dir = TEST_APIS_DIR / api with open(str(api_dir / api_config_name)) as f: api_specs = yaml.safe_load(f) assert len(api_specs) == 1 api_name = api_specs[0]["name"] client.create_api(api_spec=api_specs[0], project_dir=api_dir) try: assert endpoint_ready( client=client, api_name=api_name, timeout=deploy_timeout), f"api {api_name} not ready" response = None for _ in range(retry_attempts + 1): response = request_task( client, api_name, ) if response.status_code == HTTPStatus.OK: break time.sleep(1) job_spec = response.json() assert job_done( client=client, api_name=api_name, job_id=job_spec["job_id"], timeout=job_timeout, ), f"task job did not succeed (api_name: {api_name}, job_id: {job_spec['job_id']})" except: # best effort try: api_info = client.get_api(api_name) printer(json.dumps(api_info, indent=2)) job_status = client.get_job(api_name, job_spec["job_id"]) printer(json.dumps(job_status, indent=2)) td.Thread(target=lambda: client.stream_job_logs( api_name, job_spec["job_id"]), daemon=True).start() time.sleep(5) except: pass raise finally: delete_apis(client, [api_name])
def test_async_api( printer: Callable, client: cx.Client, api: str, deploy_timeout: int = None, poll_retries: int = 5, poll_sleep_seconds: int = 1, api_config_name: str = "cortex.yaml", ): api_dir = TEST_APIS_DIR / api with open(str(api_dir / api_config_name)) as f: api_specs = yaml.safe_load(f) expectations = None expectations_file = api_dir / "expectations.yaml" if expectations_file.exists(): expectations = parse_expectations(str(expectations_file)) assert len(api_specs) == 1 api_name = api_specs[0]["name"] client.create_api(api_spec=api_specs[0], project_dir=api_dir) try: assert apis_ready(client=client, api_names=[api_name], timeout=deploy_timeout), f"apis {api_name} not ready" with open(str(api_dir / "sample.json")) as f: payload = json.load(f) response = request_prediction(client, api_name, payload) assert ( response.status_code == HTTPStatus.OK ), f"workload submission status code: got {response.status_code}, expected {HTTPStatus.OK}" response_json = response.json() assert "id" in response_json request_id = response_json["id"] result_response = None for i in range(poll_retries + 1): result_response = retrieve_async_result(client=client, api_name=api_name, request_id=request_id) if result_response.status_code == HTTPStatus.OK: break time.sleep(poll_sleep_seconds) assert ( result_response.status_code == HTTPStatus.OK ), f"result retrieval status code: got {result_response.status_code}, expected {HTTPStatus.OK}" result_response_json = result_response.json() # validate keys are in the result json response assert ( "id" in result_response_json ), f"id key was not present in result response (response: {result_response_json})" assert ( "status" in result_response_json ), f"status key was not present in result response (response: {result_response_json})" assert ( "result" in result_response_json ), f"result key was not present in result response (response: {result_response_json})" assert ( "timestamp" in result_response_json ), f"timestamp key was not present in result response (response: {result_response_json})" # validate result json response has valid values assert ( result_response_json["id"] == request_id ), f"result 'id' and request 'id' mismatch ({result_response_json['id']} != {request_id})" assert ( result_response_json["status"] == "completed" ), f"async workload did not complete (response: {result_response_json})" assert result_response_json[ "timestamp"] != "", "result 'timestamp' value was empty" assert result_response_json[ "result"] != "", "result 'result' value was empty" # assert result expectations if expectations: assert_json_expectations(result_response_json["result"], expectations["response"]) except: # best effort try: api_info = client.get_api(api_name) printer(json.dumps(api_info, indent=2)) job_status = client.get_job(api_name, result_response_json["id"]) printer(json.dumps(job_status, indent=2)) td.Thread( target=lambda: client.stream_job_logs( api_name, result_response_json["id"]), daemon=True, ).start() time.sleep(5) except: pass raise finally: delete_apis(client, [api_name])
def test_task_api( printer: Callable, client: cx.Client, api: str, deploy_timeout: int = None, job_timeout: int = None, retry_attempts: int = 0, api_config_name: str = "cortex_cpu.yaml", node_groups: List[str] = [], local_operator: bool = False, ): api_dir = TEST_APIS_DIR / api with open(str(api_dir / api_config_name)) as f: api_specs = yaml.safe_load(f) assert len(api_specs) == 1 if len(node_groups) > 0: api_specs[0]["node_groups"] = node_groups api_name = api_specs[0]["name"] client.deploy(api_spec=api_specs[0]) try: endpoint_override = f"http://localhost:8888/tasks/{api_name}" if local_operator else None assert endpoint_ready( client=client, api_name=api_name, timeout=deploy_timeout, endpoint_override=endpoint_override, ), f"api {api_name} not ready" response = None for _ in range(retry_attempts + 1): response = request_task(client, api_name, local_operator=local_operator) if response.status_code == HTTPStatus.OK: break time.sleep(1) job_spec = response.json() job_id = job_spec["job_id"] endpoint_override = ( f"http://localhost:8888/tasks/{api_name}?jobID={job_id}" if local_operator else None) assert job_done( client=client, api_name=api_name, job_id=job_spec["job_id"], timeout=job_timeout, endpoint_override=endpoint_override, ), f"task job did not succeed (api_name: {api_name}, job_id: {job_spec['job_id']})" except: # best effort try: api_info = client.get_api(api_name) printer(json.dumps(api_info, indent=2)) job_status = client.get_job(api_name, job_spec["job_id"]) printer(json.dumps(job_status, indent=2)) td.Thread(target=lambda: stream_job_logs(client, api_name, job_spec["job_id"]), daemon=True).start() time.sleep(5) except: pass raise finally: delete_apis(client, [api_name])
def test_batch_api( printer: Callable, client: cx.Client, api: str, test_s3_path: str, deploy_timeout: int = None, job_timeout: int = None, retry_attempts: int = 0, api_config_name: str = "cortex.yaml", ): api_dir = TEST_APIS_DIR / api with open(str(api_dir / api_config_name)) as f: api_specs = yaml.safe_load(f) assert len(api_specs) == 1 api_name = api_specs[0]["name"] client.create_api(api_spec=api_specs[0], project_dir=api_dir) try: assert endpoint_ready( client=client, api_name=api_name, timeout=deploy_timeout), f"api {api_name} not ready" with open(str(api_dir / "sample.json")) as f: payload = json.load(f) response = None for _ in range(retry_attempts + 1): response = request_batch_prediction( client, api_name, item_list=payload, batch_size=2, config={"dest_s3_dir": test_s3_path}, ) if response.status_code == HTTPStatus.OK: break time.sleep(1) assert ( response.status_code == HTTPStatus.OK ), f"status code: got {response.status_code}, expected {HTTPStatus.OK} ({response.text})" job_spec = response.json() # monitor job progress assert job_done( client=client, api_name=job_spec["api_name"], job_id=job_spec["job_id"], timeout=job_timeout, ), f"job did not succeed (api_name: {api_name}, job_id: {job_spec['job_id']})" except: # best effort try: api_info = client.get_api(api_name) printer(json.dumps(api_info, indent=2)) job_status = client.get_job(api_name, job_spec["job_id"]) printer(json.dumps(job_status, indent=2)) td.Thread(target=lambda: client.stream_job_logs( api_name, job_spec["job_id"]), daemon=True).start() time.sleep(5) except: pass raise finally: delete_apis(client, [api_name])
def test_batch_api( printer: Callable, client: cx.Client, api: str, test_s3_path: str, deploy_timeout: int = None, job_timeout: int = None, retry_attempts: int = 0, api_config_name: str = "cortex_cpu.yaml", node_groups: List[str] = [], local_operator: bool = False, ): api_dir = TEST_APIS_DIR / api with open(str(api_dir / api_config_name)) as f: api_specs = yaml.safe_load(f) assert len(api_specs) == 1 if len(node_groups) > 0: api_specs[0]["node_groups"] = node_groups api_name = api_specs[0]["name"] client.deploy(api_spec=api_specs[0]) try: endpoint_override = f"http://localhost:8888/batch/{api_name}" if local_operator else None assert endpoint_ready( client=client, api_name=api_name, timeout=deploy_timeout, endpoint_override=endpoint_override, ), f"api {api_name} not ready" with open(str(api_dir / "sample.json")) as f: payload = json.load(f) response = None for _ in range(retry_attempts + 1): response = request_batch_prediction( client, api_name, item_list=payload, batch_size=2, config={"dest_s3_dir": test_s3_path}, local_operator=local_operator, ) if response.status_code == HTTPStatus.OK: break time.sleep(1) assert ( response.status_code == HTTPStatus.OK ), f"status code: got {response.status_code}, expected {HTTPStatus.OK} ({response.text})" job_spec = response.json() # monitor job progress job_id = job_spec["job_id"] endpoint_override = ( f"http://localhost:8888/batch/{api_name}?jobID={job_id}" if local_operator else None) assert job_done( client=client, api_name=api_name, job_id=job_id, timeout=job_timeout, endpoint_override=endpoint_override, ), f"job did not succeed (api_name: {api_name}, job_id: {job_spec['job_id']})" except: # best effort try: api_info = client.get_api(api_name) printer(json.dumps(api_info, indent=2)) job_status = client.get_job(api_name, job_spec["job_id"]) printer(json.dumps(job_status, indent=2)) td.Thread( target=lambda: stream_job_logs(client, api_name, job_spec[ "job_id"]), daemon=True, ).start() time.sleep(5) finally: raise finally: delete_apis(client, [api_name])