示例#1
0
def dafu_prediction(line):
    line = text_classifier.process_line(line)
    leibie = text_classifier.predict(line)[0]
    line_xl = text_classifier.features([line]).todense()
    # print(line_xl)
    # print(leibie)
    pipei_xl = jibing_xl_dict.get(leibie, 0)
    #输出对应的诊断
    nearest = ComputerNearestNeighbor(line_xl, pipei_xl)[0][1]
    yuanshujv_dict = {
        'diagnosis': df_zhenduan_list,
        'treatment': df_zhiliao_list,
        'symptom': df_zhengzhuang_list,
        'pathogeny': df_bingyin_list
    }
    pipei_shujv = yuanshujv_dict.get(leibie, 0)
    recommenddation = pipei_shujv.loc[nearest, 'dafu1']
    # print(recommenddation)
    return leibie, recommenddation
zhiliao_xl = text_classifier.features(zhiliao_list).todense()
zhengzhuang_xl = text_classifier.features(zhengzhuang_list).todense()
zhenduan_xl = text_classifier.features(zhenduan_list).todense()
jibing_xl_dict = {
    'diagnosis': zhenduan_xl,
    'treatment': zhiliao_xl,
    'symptom': zhengzhuang_xl,
    'pathogeny': bingyin_xl
}
# print(zhenduan_xl)

#输出预测类别
line = input('请输入:')
line = text_classifier.process_line(line)
leibie = text_classifier.predict(line)[0]
line_xl = text_classifier.features([line]).todense()
# print(line_xl)
print(leibie)
pipei_xl = jibing_xl_dict.get(leibie, 0)
#输出对应的诊断
nearest = ComputerNearestNeighbor(line_xl, pipei_xl)[0][1]
yuanshujv_dict = {
    'diagnosis': df_zhenduan_list,
    'treatment': df_zhiliao_list,
    'symptom': df_zhengzhuang_list,
    'pathogeny': df_bingyin_list
}
pipei_shujv = yuanshujv_dict.get(leibie, 0)
recommenddation = pipei_shujv.loc[nearest, 'dafu1']
print(recommenddation)