def test_demo3(): config_fn_ini = os.path.join(demo_dir, 'demo3.ini') config_fn_yaml = os.path.join(demo_dir, 'demo3.yaml') config = ConfigBlock(config_fn_ini) with open(config_fn_yaml, 'w') as file: yaml.dump(config.data, file) for config_fn in [config_fn_ini, config_fn_yaml]: graph_fn = os.path.join(demo_dir, 'pipe3.ps') mapping_proj = ['ell_0', 'ell_2', 'ell_4'] make_data_covariance(data_fn=data_fn, covariance_fn=covariance_fn, mapping_proj=mapping_proj) pipeline = BasePipeline(config_block=config_fn) pipeline.plot_pipeline_graph(graph_fn) pipeline.setup() pipeline.execute_parameter_values(a=0.) loglkl = pipeline.data_block[section_names.likelihood, 'loglkl'] pipeline.execute_parameter_values(a=4.) assert pipeline.data_block[section_names.likelihood, 'loglkl'] != loglkl pipeline.cleanup()
def test_demo4(): config_fn = os.path.join(demo_dir, 'demo4.ini') graph_fn = os.path.join(demo_dir, 'pipe4.ps') mapping_proj = ['ell_0', 'ell_2', 'ell_4'] make_data_covariance(data_fn=data_fn, covariance_fn=covariance_fn, mapping_proj=mapping_proj) pipeline = BasePipeline(config_block=config_fn) pipeline.plot_pipeline_graph(graph_fn) pipeline.setup() pipeline.data_block[section_names.parameters, 'a'] = 0. del pipeline.data_block[section_names.parameters, 'a_model1'] del pipeline.data_block[section_names.parameters, 'b_model1'] def test_error(): ok = False try: pipeline.execute() except BlockError: ok = True assert ok test_error() pipeline.data_block[section_names.parameters, 'a_model1'] = 0. test_error() pipeline.data_block[section_names.parameters, 'b_model1'] = 0. assert (section_names.common, 'y_data1') in pipeline.data_block assert (section_names.common, 'y_data2') not in pipeline.data_block pipeline.cleanup()
def test_internal(): os.chdir(base_dir) mapping_proj = ['ell_0', 'ell_2', 'ell_4'] make_data_covariance(data_fn=data_fn, covariance_fn=covariance_fn, mapping_proj=mapping_proj) try: # not finished main(config='demo3.ini') except CosmosisConfigurationError: pass
def test_external(): os.chdir(base_dir) mapping_proj = ['ell_0', 'ell_2', 'ell_4'] make_data_covariance(data_fn=data_fn, covariance_fn=covariance_fn, mapping_proj=mapping_proj) info = yaml_load_file('./test_cobaya.yaml') updated_info, sampler = run(info) assert 'a' in updated_info['params'] assert 'sample' in sampler.products()
def test_external(): os.chdir(base_dir) mapping_proj = ['ell_0', 'ell_2', 'ell_4'] make_data_covariance(data_fn=data_fn, covariance_fn=covariance_fn, mapping_proj=mapping_proj) ini = Inifile('test_cosmosis.ini') pipeline = LikelihoodPipeline(ini) data = pipeline.run_parameters([0.2]) assert data['likelihoods', 'cosmopipe_like'] != 0. from cosmosis.samplers.emcee.emcee_sampler import EmceeSampler from cosmosis.output.in_memory_output import InMemoryOutput output = InMemoryOutput() sampler = EmceeSampler(ini, pipeline, output) sampler.config() while not sampler.is_converged(): sampler.execute()
def test_demo2(): config_fn = os.path.join(demo_dir, 'demo2.ini') graph_fn = os.path.join(demo_dir, 'pipe2.ps') mapping_proj = ['ell_0', 'ell_2', 'ell_4'] make_data_covariance(data_fn=data_fn, covariance_fn=covariance_fn, mapping_proj=mapping_proj) pipeline = BasePipeline(config_block=config_fn) pipeline.plot_pipeline_graph(graph_fn) pipeline.setup() pipeline.data_block[section_names.parameters, 'a'] = 0. pipeline.execute() loglkl = pipeline.data_block[section_names.likelihood, 'loglkl'] pipeline.data_block[section_names.parameters, 'a'] = 4. pipeline.execute() assert pipeline.data_block[section_names.likelihood, 'loglkl'] != loglkl pipeline.cleanup()
def test_demo3b(): config_fn = os.path.join(demo_dir, 'demo3.ini') graph_fn = os.path.join(demo_dir, 'pipe3b.ps') mapping_proj = ['ell_0', 'ell_2', 'ell_4'] make_data_covariance(data_fn=data_fn, covariance_fn=covariance_fn, mapping_proj=mapping_proj) config_block = ConfigBlock(config_fn) data1 = BaseModule.from_library(name='data1', options=SectionBlock( config_block, 'data1')) model1 = FlatModel(name='model1') data2 = BaseModule.from_library(name='data2', options=SectionBlock( config_block, 'data2')) model2 = BaseModule.from_library(name='model2', options=SectionBlock( config_block, 'model2')) cov = BaseModule.from_library(name='cov', options=SectionBlock(config_block, 'cov')) like1 = BaseLikelihood(name='like1', modules=[data1, model1]) like2 = BaseLikelihood(name='like2', modules=[data2, model2]) like = JointGaussianLikelihood(name='like', join=[like1, like2], modules=[cov]) pipeline = BasePipeline(modules=[like]) pipeline.plot_pipeline_graph(graph_fn) pipeline.setup() pipeline.data_block[section_names.parameters, 'a'] = 0. pipeline.execute() loglkl = pipeline.data_block[section_names.likelihood, 'loglkl'] pipeline.data_block[section_names.parameters, 'a'] = 4. pipeline.execute() assert pipeline.data_block[section_names.likelihood, 'loglkl'] != loglkl pipeline.cleanup()
def test_demo1(): os.chdir(base_dir) config_fn = os.path.join(demo_dir, 'demo1.ini') graph_fn = os.path.join(demo_dir, 'pipe1.ps') mapping_proj = ['ell_0', 'ell_2', 'ell_4'] make_data_covariance(data_fn=data_fn, covariance_fn=covariance_fn, mapping_proj=mapping_proj) pipeline = BasePipeline(config_block=config_fn) pipeline.plot_pipeline_graph(graph_fn) pipeline.setup() pipeline.data_block[section_names.parameters, 'a'] = 0. pipeline.execute() loglkl = pipeline.data_block[section_names.likelihood, 'loglkl'] pipeline.data_block[section_names.parameters, 'a'] = 4. pipeline.execute() assert pipeline.data_block[section_names.likelihood, 'loglkl'] != loglkl pipeline.cleanup() graph_fn = os.path.join(demo_dir, 'inheritance.ps') BaseModule.plot_inheritance_graph(graph_fn, exclude=['AffineModel'])