def test_word_count(): """Test the counting of words. The example poem is Risk, by Anais Nin. """ risk_poem_counts = { 'the': 3, 'risk': 2, 'to': 2, 'and': 1, 'then': 1, 'day': 1, 'came': 1, 'when': 1, 'remain': 1, 'tight': 1, 'in': 1, 'a': 1, 'bud': 1, 'was': 1, 'more': 1, 'painful': 1, 'than': 1, 'it': 1, 'took': 1, 'blossom': 1 } expected_result = Counter(risk_poem_counts) with open('test_data/risk.txt', 'r') as reader: actual_result = countwords.count_words(reader) assert actual_result == expected_result
def test_regression(): """Regression test for Dracula.""" with open('data/dracula.txt', 'r') as reader: word_counts_dict = countwords.count_words(reader) counts_array = np.array(list(word_counts_dict.values())) actual_alpha = plotcounts.get_power_law_params(counts_array) expected_alpha = pytest.approx(1.087, abs=0.001) assert actual_alpha == expected_alpha
def test_integration(): """Test the full word count to alpha parameter workflow.""" with open('test_data/random_words.txt', 'r') as reader: word_counts_dict = countwords.count_words(reader) counts_array = np.array(list(word_counts_dict.values())) actual_alpha = plotcounts.get_power_law_params(counts_array) expected_alpha = pytest.approx(1.0, abs=0.01) assert actual_alpha == expected_alpha
def test_if_words_are_unique(self): input = ["python", "apple", "ruby"] output = {'python': 1, 'apple': 1, 'ruby': 1} result = count_words(input) self.assertEqual(output, result)
def test_if_dictionary_is_empty(self): input = [] output = {} result = count_words(input) self.assertEqual(output, result)
assert actual_alpha == expected_alpha def test_word_count(): """Test the counting of words. The example poem is Risk, by Anais Nin. """ risk_poem_counts = {'the': 3, 'risk': 2, 'to': 2, 'and': 1, 'then': 1, 'day': 1, 'came': 1, 'when': 1, 'remain': 1, 'tight': 1, 'in': 1, 'a': 1, 'bud': 1, 'was': 1, 'more': 1, 'painful': 1, 'than': 1, 'it': 1, 'took': 1, 'blossom': 1} expected_result = Counter(risk_poem_counts) with open('test_data/risk.txt', 'r') as reader: actual_result = countwords.count_words(reader) assert actual_result == expected_result def test_integration(): """Test the full word count to alpha parameter workflow.""" with open('test_data/random_words.txt', 'r') as reader: word_counts_dict = countwords.count_words(reader) counts_array = np.array(list(word_counts_dict.values())) actual_alpha = plotcounts.get_power_law_params(counts_array) expected_alpha = pytest.approx(1.0, abs=0.01) assert actual_alpha == expected_alpha def test_regression(): """Regression test for Dracula."""