示例#1
0
def load_data(paths, settings, dtype):
    M_tt, age_groups = load_age_mixing(paths['age_mixing_matrix_term'])
    M_hh, _ = load_age_mixing(paths['age_mixing_matrix_hol'])

    C = collapse_commute_data(paths['mobility_matrix'])
    la_names = C.index.to_numpy()

    w_period = [
        settings['inference_period'][0], settings['prediction_period'][1]
    ]
    W = load_commute_volume(paths['commute_volume'], w_period)['percent']

    pop = collapse_pop(paths['population_size'])

    M_tt = M_tt.astype(DTYPE)
    M_hh = M_hh.astype(DTYPE)
    C = C.to_numpy().astype(DTYPE)
    np.fill_diagonal(C, 0.)
    W = W.astype(DTYPE)
    pop['n'] = pop['n'].astype(DTYPE)

    return {
        'M_tt': M_tt,
        'M_hh': M_hh,
        'C': C,
        'la_names': la_names,
        'age_groups': age_groups,
        'W': W,
        'pop': pop
    }
示例#2
0
def load_data(paths, settings, dtype=DTYPE):
    C = load_mobility_matrix(paths["mobility_matrix"])
    la_names = C.index.to_numpy()

    w_period = [
        settings["inference_period"][0], settings["inference_period"][1]
    ]
    W = load_commute_volume(paths["commute_volume"], w_period)["percent"]

    pop = load_population(paths["population_size"])

    C = C.to_numpy().astype(DTYPE)
    np.fill_diagonal(C, 0.0)
    W = W.to_numpy().astype(DTYPE)
    pop = pop.to_numpy().astype(DTYPE)

    return {
        "C": C,
        "la_names": la_names,
        "W": W,
        "pop": pop,
    }
示例#3
0
                      help="configuration file")
    options, args = parser.parse_args()
    with open(options.config, 'r') as ymlfile:
        config = yaml.load(ymlfile)

    param = sanitise_parameter(config['parameter'])
    settings = sanitise_settings(config['settings'])

    K_tt, age_groups = load_age_mixing(
        config['data']['age_mixing_matrix_term'])
    K_hh, _ = load_age_mixing(config['data']['age_mixing_matrix_hol'])

    T, la_names = load_mobility_matrix(config['data']['mobility_matrix'])
    np.fill_diagonal(T, 0.)

    W = load_commute_volume(config['data']['commute_volume'],
                            settings['inference_period'])['percent']

    N, n_names = load_population(config['data']['population_size'])

    K_tt = K_tt.astype(DTYPE)
    K_hh = K_hh.astype(DTYPE)
    W = W.to_numpy().astype(DTYPE)
    T = T.astype(DTYPE)
    N = N.astype(DTYPE)

    case_reports = pd.read_csv(config['data']['reported_cases'])
    case_reports['DateVal'] = pd.to_datetime(case_reports['DateVal'])
    case_reports = case_reports[case_reports['DateVal'] >= '2020-02-19']
    date_range = [case_reports['DateVal'].min(), case_reports['DateVal'].max()]
    y = case_reports['CumCases'].to_numpy()
    y_incr = np.round((y[1:] - y[:-1]) * 0.8)