示例#1
0
def plot_batch_results(df,
                       health_metrics=('Susceptible', 'Infected',
                                       'Hospitalization', 'Severe',
                                       'Recovered_Immune', 'Death'),
                       ecom_metrics=('Q1', 'Q2', 'Q3', 'Q4', 'Q5')):
    """
    Plot the results of a batch executions contained in the given DataFrame
    :param ecom_metrics:
    :param health_metrics:
    :param df: Pandas DataFrame returned by batch_experiment method
    """

    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=[20, 5])

    ax[0].set_title('Average Contagion Evolution')
    ax[0].set_xlabel("Nº of Days")
    ax[0].set_ylabel("% of Population")

    for col in health_metrics:
        means = df[(df["Metric"] == col)]['Avg'].values
        std = df[(df["Metric"] == col)]['Std'].values
        plot_mean_std(ax[0], means, std, legend=col, color=color1(col))

    handles, labels = ax[0].get_legend_handles_labels()
    lgd = ax[0].legend(handles, labels, loc='top right')

    mmax = 0.0
    mmin = np.inf
    smax = 0
    smin = np.inf

    for col in ecom_metrics:
        val = df[(df["Metric"] == col)]['Avg'].values
        tmp = int(np.max(val))
        mmax = np.max([mmax, tmp])
        tmp = np.min(val)
        mmin = np.min([mmin, tmp])
        val = df[(df["Metric"] == col)]['Std'].values
        tmp = np.max(val)
        smax = np.max([smax, tmp])
        tmp = np.min(val)
        smin = np.min([smin, tmp])

    ax[1].set_title('Average Economical Impact')
    ax[1].set_xlabel("Nº of Days")
    ax[1].set_ylabel("Wealth")

    for col in ecom_metrics:
        means = df[(df["Metric"] == col)]['Avg'].values
        n_mean = np.interp(means, (mmin, mmax), (0, 1))
        std = df[(df["Metric"] == col)]['Std'].values
        n_std = np.interp(std, (smin, smax), (0, 1))
        ax[1].plot(n_mean, label=legend_ecom[col])
        # std = np.log10(df[(df["Metric"] == col)]['Std'].values)
        # plot_mean_std(ax[1], n_mean, n_std, color=color3(col))

    handles, labels = ax[1].get_legend_handles_labels()
    lgd = ax[1].legend(handles, labels, loc='top left')
def plot_batch_results(df):
    metrics = df['Metric'].unique()

    health_metrics = [k for k in metrics if "Q" not in k and "Asym" not in k]
    ecom_metrics = [k for k in metrics if "Q" in k]

    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=[20, 5])

    ax[0].set_title('Average Contagion Evolution')
    ax[0].set_xlabel("Nº of Days")
    ax[0].set_ylabel("% of Population")

    for col in health_metrics:
        means = df[(df["Metric"] == col)]['Avg'].values
        std = df[(df["Metric"] == col)]['Std'].values
        plot_mean_std(ax[0], means, std, legend=col, color=color1(col))

    handles, labels = ax[0].get_legend_handles_labels()
    lgd = ax[0].legend(handles, labels, loc='top right')

    mmax = 0.0
    mmin = np.inf
    smax = 0
    smin = np.inf

    for col in ecom_metrics:
        val = df[(df["Metric"] == col)]['Avg'].values
        tmp = int(np.max(val))
        mmax = np.max([mmax, tmp])
        tmp = np.min(val)
        mmin = np.min([mmin, tmp])
        val = df[(df["Metric"] == col)]['Std'].values
        tmp = np.max(val)
        smax = np.max([smax, tmp])
        tmp = np.min(val)
        smin = np.min([smin, tmp])

    ax[1].set_title('Average Economical Impact')
    ax[1].set_xlabel("Nº of Days")
    ax[1].set_ylabel("Wealth")

    for col in ecom_metrics:
        means = df[(df["Metric"] == col)]['Avg'].values
        n_mean = np.interp(means, (mmin, mmax), (0, 1))
        std = df[(df["Metric"] == col)]['Std'].values
        n_std = np.interp(std, (smin, smax), (0, 1))
        ax[1].plot(n_mean, label=legend_ecom[col])
        #std = np.log10(df[(df["Metric"] == col)]['Std'].values)
        #plot_mean_std(ax[1], n_mean, n_std, color=color3(col))

    handles, labels = ax[1].get_legend_handles_labels()
    lgd = ax[1].legend(handles, labels, loc='top left')
def plot_graph_batch_results(df, health_metrics=('Susceptible', 'Exposed','Infected', 'Hospitalization', 'Severe', 'Recovered_Immune', 'Death'),
                       ecom_metrics=('Q1', 'Q2', 'Q3', 'Q4', 'Q5','Business','Government'), **kwargs):
    """
    Plot the results of a batch executions contained in the given DataFrame
    :param ecom_metrics:
    :param health_metrics:
    :param df: Pandas DataFrame returned by batch_experiment method
    """
    from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,
                                   AutoMinorLocator)

    iterations = max(df['Iteration'].values) + 1

    tick_unit = kwargs.get('tick_unit', 72)

    tickslabels = [str(i // 24) for i in range(0, iterations, tick_unit)]

    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=[20, 5])

    ax[0].set_title('Average Contagion Evolution')
    ax[0].set_xlabel("Nº of Days")
    ax[0].set_ylabel("% of Population")
    ax[0].set_xlim((0, iterations))
    ax[0].xaxis.set_major_locator(MultipleLocator(tick_unit))
    ax[0].set_xticklabels(tickslabels)

    for col in health_metrics:
        means = df[(df["Metric"] == col)]['Avg'].values
        std = df[(df["Metric"] == col)]['Std'].values
        plot_mean_std(ax[0], means, std, legend=col, color=color1(col))

    handles, labels = ax[0].get_legend_handles_labels()
    lgd = ax[0].legend(handles, labels, loc='top right')

    ax[1].set_title('Average Economical Impact')
    ax[1].set_xlabel("Nº of Days")
    ax[1].set_ylabel("% of Wealth")
    ax[1].set_xlim((0, iterations))
    ax[1].xaxis.set_major_locator(MultipleLocator(tick_unit))
    ax[1].set_xticklabels(tickslabels)

    for col in ecom_metrics:
        means = df[(df["Metric"] == col)]['Avg'].values
        #n_mean = np.interp(means, (mmin, mmax), (0, 1))
        std = df[(df["Metric"] == col)]['Std'].values
        #n_std = np.interp(std, (smin, smax), (0, 1))
        #ax[1].plot(means, label=legend_ecom[col])
        # std = np.log10(df[(df["Metric"] == col)]['Std'].values)
        plot_mean_std(ax[1], means, std, legend=legend_ecom[col], color=color3(col))

    handles, labels = ax[1].get_legend_handles_labels()
    lgd = ax[1].legend(handles, labels, loc='top left')
def plot_graph_batch_results(df, **kwargs):
    """
    Plot the results of a batch executions contained in the given DataFrame
    :param ecom_metrics:
    :param health_metrics:
    :param df: Pandas DataFrame returned by batch_experiment method
    """
    from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,
                                   AutoMinorLocator)
    A1 = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5']

    health_metrics = ('Susceptible', 'Infected', 'Hospitalization', 'Severe',
                      'Recovered_Immune', 'Death')
    ecom_metrics = ('Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Business', 'Government')

    health_legend = {
        'Susceptible': '$S_t$ - Susceptible',
        'Infected': '$I_t$ - Infected',
        'Hospitalization': '$S^H_t$ - Hospitalization',
        'Severe': '$I^S_t$ - Severe',
        'Recovered_Immune': '$R_t$ - Recovered',
        'Death': '$D_t$ - Death'
    }

    ecom_legend = {
        'A1': '$W^{A1}_t$ - Persons',
        'Business': '$W^{A3}_t$ - Business',
        'Government': '$W^{A4}_t$ - Government',
    }

    colors = {
        'A1': 'purple',
        'Business': 'red',
        'Government': 'brown',
    }
    epidem = kwargs.get('epidem', True)

    iterations = max(df['Iteration'].values) + 1

    tick_unit = kwargs.get('tick_unit', 72)

    tickslabels = [str(i // 24) for i in range(0, iterations, tick_unit)]

    fig, ax = plt.subplots(nrows=1,
                           ncols=1 if not epidem else 2,
                           figsize=[15, 4])

    if epidem:
        ep_ax = ax[0]
        ep_ax.set_title('Average Epidemiological Evolution')
        ep_ax.set_xlabel("Nº of Days")
        ep_ax.set_ylabel("% of Population")
        ep_ax.set_xlim((0, iterations))
        ep_ax.xaxis.set_major_locator(MultipleLocator(tick_unit))
        ep_ax.set_xticklabels(tickslabels)

        for col in health_metrics:
            means = df[(df["Metric"] == col)]['Avg'].values
            std = df[(df["Metric"] == col)]['Std'].values
            plot_mean_std(ep_ax,
                          means,
                          std,
                          legend=health_legend[col],
                          color=color1(col))

        handles, labels = ep_ax.get_legend_handles_labels()
        lgd = ep_ax.legend(handles, labels, loc=2, bbox_to_anchor=(1, 1))

    ec_ax = ax[1] if epidem else ax

    ec_ax.set_title('Average Economical Impact')
    ec_ax.set_xlabel("Nº of Days")
    ec_ax.set_ylabel("% of GDP")
    ec_ax.set_xlim((0, iterations))
    ec_ax.xaxis.set_major_locator(MultipleLocator(tick_unit))
    ec_ax.set_xticklabels(tickslabels)

    for col in ecom_legend.keys():
        if col == 'A1':
            means = np.zeros(iterations)
            std = np.zeros(iterations)
            for m2 in A1:
                means += df[(df["Metric"] == m2)]['Avg'].values
                std += df[(df["Metric"] == m2)]['Std'].values
        else:
            means = df[(df["Metric"] == col)]['Avg'].values
            std = df[(df["Metric"] == col)]['Std'].values
        l = len(means)
        lb = [means[k] - std[k] for k in range(l)]
        ub = [means[k] + std[k] for k in range(l)]

        ec_ax.fill_between(range(l), ub, lb, color=colors[col], alpha=.4)
        ec_ax.plot(range(l), means, colors[col], label=ecom_legend[col])

    handles, labels = ec_ax.get_legend_handles_labels()
    lgd = ec_ax.legend(handles, labels, loc=2, bbox_to_anchor=(1, 1))

    plt.tight_layout()