def test_CSVMarshall_uses_same_paths_as_paths_module(tmpdir): """ Runs the gamut of paths produced by paths.py and compares to CSVMarshall path computation. """ from covid_model_seiir_pipeline.paths import ( RegressionPaths, ForecastPaths, ) root = pathlib.Path(tmpdir) m = CSVMarshall(root) r = RegressionPaths(root) f = ForecastPaths(root, scenarios=["happy"]) dargs = {'draw_id': 4} sdargs = {'scenario': "happy", 'draw_id': 4} # forecasting/data.py # load_regression_coefficients assert r.get_coefficient_file(**dargs) == m.resolve_key( Keys.coefficient(**dargs)) # load_dates_df assert r.get_date_file(**dargs) == m.resolve_key(Keys.date(**dargs)) # load_beta_regression assert r.get_beta_regression_file(**dargs) == m.resolve_key( Keys.regression_beta(**dargs)) # load_infection_data assert r.get_data_file(**dargs) == m.resolve_key( Keys.location_data(**dargs)) # load_beta_params assert r.get_beta_param_file(**dargs) == m.resolve_key( Keys.parameter(**dargs)) # save_components assert f.get_components_path(**sdargs) == m.resolve_key( Keys.components(**sdargs)) # save_beta_scales assert f.get_beta_scaling_path(**sdargs) == m.resolve_key( Keys.beta_scales(**sdargs)) # save_outputs assert f.get_outputs_path(**sdargs) == m.resolve_key( Keys.forecast_raw_outputs(**sdargs)) # regression/data.py # save_beta_param_file assert r.get_beta_param_file(**dargs) == m.resolve_key( Keys.parameter(**dargs)) # save_date_file assert r.get_date_file(**dargs) == m.resolve_key(Keys.date(**dargs)) # save_regression_coefficients assert r.get_coefficient_file(**dargs) == m.resolve_key( Keys.coefficient(**dargs)) # save_regression_betas assert r.get_beta_regression_file(**dargs) == m.resolve_key( Keys.regression_beta(**dargs)) # save_location_data assert r.get_data_file(**dargs) == m.resolve_key( Keys.location_data(**dargs))
def test_beta_scales_marshall(self, instance, beta_scales): self.assert_load_dump_workflow_correct( instance, beta_scales, key=Keys.beta_scales(scenario='happy', draw_id=4))
def load_beta_scales(self, scenario: str, draw_id: int): return self.forecast_marshall.load( MKeys.beta_scales(scenario=scenario, draw_id=draw_id))
def save_beta_scales(self, scales: pd.DataFrame, scenario: str, draw_id: int): self.forecast_marshall.dump(scales, key=MKeys.beta_scales(scenario=scenario, draw_id=draw_id))