def test_predict_pred(reg_dataset): x_train = reg_dataset[0] y_train = reg_dataset[1] x_cal = reg_dataset[2] y_cal = reg_dataset[3] x_test = reg_dataset[4] adapt_model = Adapt_to_CP(RandomForestRegressor(n_estimators=10), True) adapt_model.fit(x_train, y_train) adapt_model.calibrate(x_cal, y_cal) pred = adapt_model.predict(x_test, 0.8) assert type(pred[1]) == np.ndarray
def test_calibrate(reg_dataset): x_train = reg_dataset[0] y_train = reg_dataset[1] x_cal = reg_dataset[2] y_cal = reg_dataset[3] adapt_model = Adapt_to_CP(RandomForestRegressor(n_estimators=10), True) adapt_model.fit(x_train, y_train) assert adapt_model.calibrate(x_cal, y_cal) == None