def test_KM_config(): # KM--config ========================= G=nx.karate_club_graph() print("Running KM_config ...") km = cpa.KM_config() km.detect(G) pair_id = km.get_pair_id() coreness = km.get_coreness() sig_pair_id, sig_coreness, significance, p_values = cpa.qstest(pair_id, coreness, G, km)
edges = mpatches.Patch(color='white', label='Edge Length - Indicator of Trust Inversely') plt.legend(handles=[trusted, untrusted, size], loc='lower right') pos = nx.spring_layout(DG, k=0.25) sizes = [get_size(n) for n in DG] colors = [get_color(n) for n in DG] nc = nx.draw_networkx_nodes(DG, pos, nodelist=DG.nodes(), node_size=sizes, linewidths=2.0, node_color=colors, cmap=plt.cm.RdYlGn, alpha=0.8) ec = nx.draw_networkx_edges(DG, pos, arrows=True, alpha=0.08) ax = plt.axis('off') plt.show() import cpalgorithm as cp km = cp.KM_config(); km.detect(DG) c = km.get_pair_id() x = km.get_coreness() #for k, v in sorted(c.items()): # print(k, v) print("END! END! END! END! ") #sig_pair_id, sig_coreness, significance, p_values = cp.qstest(c, x, DG, km) #x_sorted = {k: v for k, v in sorted(x.items(), key=lambda y: y[1])} #for k, v in x_sorted.items(): # print(k, v)
import pandas as pd import networkx as nx import cpalgorithm as cp G = nx.karate_club_graph() be = cp.KM_config(num_runs=100000) be.detect(G) c = be.get_pair_id() x = be.get_coreness() print('Name\tPairID\tCoreness') for key, value in sorted(c.items(), key=lambda x: x[1]): print('%s\t%d\t%f' % (key, c[key], x[key]))
import networkx as nx import pandas as pd import cpalgorithm as cp df = pd.read_csv('Using dataset.csv', sep=',') #load data from dataset G = nx.from_pandas_edgelist(df) algorithm = cp.KM_config() algorithm.detect(G) c = algorithm.get_pair_id() x = algorithm.get_coreness() print('Name\tPairID\tCoreness') for key, value in sorted(c.items(), key=lambda x: x[1]): print('%s\t%d\t%f' % (key, c[key], x[key]))
def detect_core_periphery(G): algorithm = cp.KM_config() algorithm.detect(G) c = algorithm.get_pair_id() x = algorithm.get_coreness()