示例#1
0
文件: cli.py 项目: luanfonceca/pyp5js
def transcrypt_sketch(sketch_name, sketch_dir, pyp5js):
    """
    Command to generate the P5.js code for a python sketch

    Params:
    - sketch_name: name of the sketch (will create a {sketch_name}.py)

    Opitionals
    - sketch_dir: sketch's directory (defaults to ./{sketch_name})
    - pyp5hs: path to the pyp5js main file (defaults to local install)
    """
    SKETCH_DIR = Path(sketch_dir or f'./{sketch_name}')
    if not SKETCH_DIR.exists():
        cprint.warn(f"Couldn't find the sketch.")
        cprint.err(f"The directory {SKETCH_DIR} doesn't exist.",
                   interrupt=True)

    sketch = SKETCH_DIR.child(f"{sketch_name}.py")
    pyp5js = Path(pyp5js or PYP5_DIR)

    command = ' '.join([
        str(c)
        for c in ['transcrypt', '-xp', pyp5js, '-b', '-m', '-n', sketch]
    ])
    cprint.info(f"Command:\n\t {command}")

    transcrypt = subprocess.Popen(shlex.split(command))
    transcrypt.wait()
示例#2
0
async def interact(conn, svr, connector, method, args, verbose=False):
    try:
        await connector
    except Exception as e:
        print("Unable to connect to server: %s" % e)
        return -1

    cprint.info("\nConnected to: %s\n" % svr)

    if verbose:
        donate = await conn.RPC('server.donation_address')
        if donate:
            cprint.info("Donations: " + donate)

        motd = await conn.RPC('server.banner')
        cprint.info("\n---\n%s\n---" % motd)

    # XXX TODO do a simple REPL here

    if method:
        cprint.warn("\nMethod: %s" % method)

    # risky type cocerce here
    args = [(int(i) if i.isdigit() else i) for i in args]

    try:
        rv = await conn.RPC(method, *args)
        cprint.ok(json.dumps(rv, indent=1))
    except ElectrumErrorResponse as e:
        cprint.err(e)

    conn.close()
示例#3
0
def main():
    """main cycle of program"""
    try:
        plc = connect_to_plc("185.6.25.165", 0, 1)
        res = True
    except:
        res = False
    while res:
        res = step_cycle(plc)
    if not res:
        cprint.warn("reconnect to plc")
        main()
示例#4
0
文件: fs.py 项目: turicas/pyp5js
    def sketch_py(self):
        py_file = self.sketch_dir.child(f'{self.sketch_name}.py')

        if self.check_sketch_dir and not py_file.exists():
            cwd_py_file = Path(os.getcwd()).child(f"{self.sketch_name}.py")
            if not cwd_py_file.exists():
                cprint.warn(f"Couldn't find the sketch.")
                cprint.err(
                    f"Neither the file {py_file} or {cwd_py_file} exist.",
                    interrupt=True)

            py_file = cwd_py_file
            self._sketch_dir = py_file.parent

        return py_file
    def predict(self, img):
        # Reshape the latest image
        orig_h, orig_w = img.shape[:2]
        # img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        input_image = Image.fromarray(img)
        img_rsz = np.array(input_image.resize(self.input_shape[:2]))

        if self.arch == 'ssd':
            (boxes, scores, predictions, _), elapsed = self._forward_pass({self.image_tensor: img_rsz[None, ...]})
            boxes = list(np.squeeze(boxes))
            scores = list(np.squeeze(scores))
            classes = list(np.squeeze(predictions).astype(int))

            boxes_full = []
            for box, prob, cls in zip(boxes, scores, classes):
                if prob >= self.confidence_threshold and cls == self.person_class:
                    # x, y, w, h, p
                    y1 = max(box[0], 0.0) * orig_h
                    x1 = max(box[1], 0.0) * orig_w
                    y2 = min(box[2], 1.0) * orig_h
                    x2 = min(box[3], 1.0) * orig_w

                    boxes_full.append([x1, y1, x2-x1, y2-y1, prob])

            return boxes_full, elapsed

        elif self.arch in ['yolov3', 'yolov3tiny']:
            detections, elapsed = self._forward_pass({self.inputs: img_rsz[None, ...]})
            # Nxkx(NUM_CLASSES + 4 + 1) tensor containing k detections for each n-th image
            # NMS
            detections_filtered = nms.non_max_suppression(detections[0], 0.5)
            # The key 0 contains the human detections.
            if not 0 in detections_filtered:
                return [], elapsed
            persons = detections_filtered[0]
            boxes_full = []
            for box, prob in persons:
                if prob >= self.confidence_threshold:
                    # x, y, w, h, p
                    x1 = max(box[0]/self.input_shape[1], 0.0) * orig_w
                    y1 = max(box[1]/self.input_shape[0], 0.0) * orig_h
                    x2 = min(box[2]/self.input_shape[1], 1.0) * orig_w
                    y2 = min(box[3]/self.input_shape[0], 1.0) * orig_h
                    boxes_full.append([x1, y1, x2-x1, y2-y1, prob])
            return boxes_full, elapsed
        else:
            cprint.warn(f'Implement predict for {self.arch}!!')
示例#6
0
def _validate_sketch_path(sketch_name=None, sketch_dir=None):
    """
    Searches for the sketch .py file
    """
    sketch_dir = Path(sketch_dir or f'{sketch_name}')

    sketch = sketch_dir.child(f"{sketch_name}.py")
    if not sketch.exists():
        sketch_file = Path(os.getcwd()).child(f"{sketch_name}.py")
        if not sketch_file.exists():
            cprint.warn(f"Couldn't find the sketch.")
            cprint.err(f"Neither the file {sketch} or {sketch_file} exist.",
                       interrupt=True)

        sketch = sketch_file
        sketch_dir = sketch.parent

    return sketch
示例#7
0
def new_sketch(sketch_name, sketch_dir):
    """
    Creates a new sketch, on a folder/directory
    with the required assets and a index.html file,
    all based on a template
    
    :param sketch_name: name for new sketch
    :type sketch_name: string
    :param sketch_dir: directory name
    :type sketch_dir: string
    :return: file names
    :rtype: list of strings
    """

    SKETCH_DIR = Path(sketch_dir or f'{sketch_name}')

    if SKETCH_DIR.exists():
        cprint.warn(f"Cannot configure a new sketch.")
        cprint.err(f"The directory {SKETCH_DIR} already exists.",
                   interrupt=True)

    static_dir = SKETCH_DIR.child('static')
    templates_files = [(TEMPLATES_DIR.child('base_sketch.py'),
                        SKETCH_DIR.child(f'{sketch_name}.py')),
                       (PYP5_DIR.child('static',
                                       'p5.js'), static_dir.child('p5.js'))]

    index_template = templates.get_template('index.html')
    context = {
        "p5_js_url": "static/p5.js",
        "sketch_js_url": f"{TARGET_DIRNAME}/{sketch_name}.js",
        "sketch_name": sketch_name,
    }
    index_contet = index_template.render(context)

    os.mkdir(SKETCH_DIR)
    os.mkdir(static_dir)
    for src, dest in templates_files:
        shutil.copyfile(src, dest)

    with open(SKETCH_DIR.child("index.html"), "w") as fd:
        fd.write(index_contet)

    return templates_files[0][1]
示例#8
0
def b_func(n, i):
    cprint.warn(f"B({n},{i})")
    if n % 2 == 0 and n > 2:
        if i < (n - 1):
            cprint.warn(f"return {i}")
            return i
        else:
            cprint.warn(f"return {n - 2}")
            return n - 2
    else:
        cprint.warn(f"return {n - 1}")
        return n - 1
示例#9
0
def new_sketch(sketch_name, sketch_dir):
    """
    Creates a new sketch, on a folder/directory
    with the required assets and a index.html file,
    all based on a template

    :param sketch_name: name for new sketch
    :type sketch_name: string
    :param sketch_dir: directory name
    :type sketch_dir: string
    :return: file names
    :rtype: list of strings
    """

    sketch_files = Pyp5jsSketchFiles(sketch_dir,
                                     sketch_name,
                                     check_sketch_dir=False)
    if not sketch_files.can_create_sketch():
        cprint.warn(f"Cannot configure a new sketch.")
        cprint.err(f"The directory {sketch_files.sketch_dir} already exists.",
                   interrupt=True)

    pyp5js_files = Pyp5jsLibFiles()
    templates_files = [
        (pyp5js_files.base_sketch, sketch_files.sketch_py),
        (pyp5js_files.p5js, sketch_files.p5js),
        (pyp5js_files.p5_dom_js, sketch_files.p5_dom_js),
    ]

    os.makedirs(sketch_files.sketch_dir)
    os.mkdir(sketch_files.static_dir)
    for src, dest in templates_files:
        shutil.copyfile(src, dest)

    index_contet = get_index_content(sketch_name)
    with open(sketch_files.index_html, "w") as fd:
        fd.write(index_contet)

    return sketch_files.sketch_py, sketch_files.index_html
示例#10
0
文件: cli.py 项目: luanfonceca/pyp5js
def configure_new_sketch(sketch_name, sketch_dir):
    """
    Create dir and configure boilerplate

    Params:
    - sketch_name: name of the sketch (will create a {sketch_name}.py)

    Opitionals
    - sketch_dir: directory to save the sketch (defaults to ./{sketch_name})
    """
    SKETCH_DIR = Path(sketch_dir or f'./{sketch_name}')
    if SKETCH_DIR.exists():
        cprint.warn(f"Cannot configure a new sketch.")
        cprint.err(f"The directory {SKETCH_DIR} already exists.",
                   interrupt=True)

    static_dir = SKETCH_DIR.child('static')
    templates_files = [(TEMPLATES_DIR.child('base_sketch.py'),
                        SKETCH_DIR.child(f'{sketch_name}.py')),
                       (PYP5_DIR.child('static',
                                       'p5.js'), static_dir.child('p5.js'))]

    os.mkdir(SKETCH_DIR)
    os.mkdir(static_dir)
    for src, dest in templates_files:
        copyfile(src, dest)

    index_template = templates.get_template('index.html')
    context = {
        "p5_js_url": "static/p5.js",
        "sketch_js_url": f"__target__/{sketch_name}.js",
    }
    index_contet = index_template.render(context)

    with open(SKETCH_DIR.child("index.html"), "w") as fd:
        fd.write(index_contet)
示例#11
0
def listen_server_mvlab():
    while True:
        cprint.info("Try to start xocket server")
        try:
            s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            s.bind(('0.0.0.0', SOCKET_PORT))
            s.listen()
            cprint.warn('Listen 0.0.0.0:%s' % SOCKET_PORT)
        except:
            time.sleep(5)
            continue
        while True:
            try:
                conn, addr = s.accept()
                while True:
                    try:
                        data = conn.recv(1024)
                        print(data)
                        if not data:
                            break
                        try:
                            data = json.loads(data)
                            print(data)
                        except:
                            cprint.err("string not json")
                            data = json.dumps(
                                "{'error':'string not json'}").encode('utf-8')
                            conn.send(data)

                        if "dash_teldafax" in data:
                            data = json.dumps(result_query).encode('utf-8')
                            cprint.warn('sended  %s' % data)
                            conn.send(data)
                        elif "get_connections" in data:
                            ss = []
                            if "connection_name" in data:
                                ss = list_connections[
                                    data["connection_name"]]['value_list']
                                ass = []
                                for i in ss:
                                    ass.append({"name": i['name']})
                                ss = json.dumps(ass).encode('utf-8')
                                ss_len = int(math.ceil((len(ss) / 1024)))

                                conn.send(ss_len.to_bytes(2, 'big'))
                                for i in range(ss_len):
                                    start = i * 1024
                                    end = (i + 1) * 1024

                                    cprint.info(ss[start:end])
                                    conn.send(ss[start:end])
                                    time.sleep(0.2)
                                time.sleep(0.5)
                                conn.close()

                            else:
                                count = 0
                                for d in list_connections:
                                    ss.append({
                                        'connection_name': d['name'],
                                        "ip": d['ip'],
                                        'key': count
                                    })
                                    count += 1
                                print(ss)
                                data = json.dumps(ss).encode('utf-8')
                                conn.send(data)
                                time.sleep(0.5)
                        else:
                            data = {}
                            count = 0
                            for i in list_connections:
                                data[i['name']] = [
                                    statuses_connection[count], i['name'],
                                    i['ip']
                                ]
                                count += 1
                            print(data)
                            data = json.dumps(data).encode('utf-8')
                            cprint.warn('sended  %s' % data)
                            conn.send(data)
                    except Exception as e:
                        cprint.info(e)
                        break
            except:
                s.close()
                break
示例#12
0
    def follow(self):
        full_image = self.camera.get_rgb_image()
        img2show = cv2.cvtColor(full_image, cv2.COLOR_RGB2BGR)

        self.network.predict()
        self.detection_boxes = self.network.boxes
        self.detection_scores = self.network.scores

        for xmin, ymin, xmax, ymax in self.detection_boxes:
            cv2.rectangle(img2show, (xmin, ymax), (xmax, ymin), (0, 0, 255), 5)

        self.persons = self.person_tracker.evalPersons(self.detection_boxes,
                                                       self.detection_scores,
                                                       full_image)
        self.faces = self.person_tracker.getFaces(full_image)

        cprint.info('\t........%d/%d faces detected........' %
                    (len(self.faces), len(self.persons)))

        mom_found_now = False
        # Iteration over all faces and persons...
        for person in self.persons:

            if person.is_mom:
                self.mom_coords = person.coords
                mom_found_now = True
                break
            else:
                faces = person.ftrk.tracked_faces
                if len(faces) > 0:
                    face = faces[0]
                    [f_width,
                     f_height] = [face[2] - face[0], face[3] - face[1]]
                    f_total_box = np.zeros(4, dtype=np.int16)
                    f_total_box[:2] = person[:2] + face[:2]
                    f_total_box[2:4] = f_total_box[:2] + [f_width, f_height]
                    cropped_face = full_image[f_total_box[1]:f_total_box[3],
                                              f_total_box[0]:f_total_box[2], :]
                    # We compute the likelihood with mom...
                    dist_to_mom = self.siamese_network.distanceToMom(
                        cropped_face)
                    if dist_to_mom < self.face_thres:
                        # Unset other moms
                        for idx2 in range(len(self.persons)):
                            self.person_tracker.tracked_persons[
                                idx2].is_mom = False
                        # And set that person to mom.
                        self.person_tracker.tracked_persons[idx].is_mom = True
                        self.mom_coords = person.coords
                        mom_found_now = True
                        break

        if mom_found_now:
            cprint.ok("\t\t  Mom found")
            cprint.ok(str(self.mom_coords))
            #[xmin, ymin, xmax, ymax] = self.mom_coords
            #cv2.rectangle(img2show, (xmin, ymax), (xmax, ymin), (0,255,0), 5)
        else:
            cprint.warn("\t\t  Looking for mom...")

        return img2show
示例#13
0
def console_warn(msg):
    now_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S.%f")
    cprint.warn('%s [WARN] - %s' % (now_time, msg))
示例#14
0
        def goToMom(mom_box):
            '''
            Function to go towards mom.
            '''
            # We compute the distance to mom
            ################################
            ############### v ##############
            ################################
            mom_depth = full_depth[mom_box[1]:mom_box[3], mom_box[0]:mom_box[2]]
            distance, grid = self.estimateDepth(mom_depth)
            # V error processing (go forward/backward)
            error = distance - self.v_center
            if self.prev_error is not None:
                d_error = abs(error - self.prev_error)
            else:
                d_error = 0
            # Avoid jumps
            if d_error < 10.0:
                if error < -self.v_margin:
                    # Too near
                    v = self.v_PID.processError(error, verbose=True)
                    cprint.warn('  Distance: %d px (too near) >> VX = %.3f m/s' % (distance, v))
                    # Avoid overswitching
                    if not self.margin_expanded:
                        self.v_margin = self.v_margin - 5
                        self.margin_expanded = True

                    self.margin_expanded = True
                    cprint.info("New margin: %d" % (self.v_margin))

                elif error > self.v_margin:
                    # Too far
                    v = self.v_PID.processError(error, verbose=True)
                    cprint.warn('  Distance: %d px (too far) >> VX = %.3f m/s' % (distance, v))
                    # Avoid overswitching
                    if not self.margin_expanded:
                        self.v_margin = self.v_margin - 5
                        self.margin_expanded = True
                    cprint.info("New margin: %d" % (self.v_margin))

                else:
                    # Inside range (OK)
                    cprint.ok('  Distance: %d px (under control)' % (distance))
                    self.v_PID.resetError()
                    self.v_PID.brake()

                    if self.margin_expanded and error < self.original_v_margin:
                        # The margin can be restored...
                        cprint.info("Margin restored.")
                        self.v_margin = self.original_v_margin
                        self.margin_expanded = False

            self.prev_error = error

            # Now, we compute the necessary turning
            ################################
            ############### w ##############
            ################################

            mom_center = (mom_box[2] + mom_box[0]) / 2
            h_error = self.center_coords[0] - mom_center

            if abs(h_error) > self.w_margin:
                # Turning...
                w = self.w_PID.processError(h_error, verbose=False)
                if w < 0:
                    turn_dir = 'right'
                else:
                    turn_dir = 'left'

                cprint.warn('  Angle: %d px >> Turning %s (w: %.3f r/s)' % (h_error, turn_dir, w))
            else:
                # Inside the angle margin (OK)
                cprint.ok('  Angle: %d px (under control)' % (h_error))
                self.w_PID.resetError()
                self.w_PID.brake()
示例#15
0
    def move(self):
        '''
        Method called on each iteration. Detects persons and look for mom.
        Commands the robot towards mom if it is found.
        '''
        # We get the full RGB and D images.
        full_image = self.camera.getImage()
        d = self.depth.getImage()
        full_depth, _, _ = cv2.split(d)

        def goToMom(mom_box):
            '''
            Function to go towards mom.
            '''
            # We compute the distance to mom
            ################################
            ############### v ##############
            ################################
            mom_depth = full_depth[mom_box[1]:mom_box[3], mom_box[0]:mom_box[2]]
            distance, grid = self.estimateDepth(mom_depth)
            # V error processing (go forward/backward)
            error = distance - self.v_center
            if self.prev_error is not None:
                d_error = abs(error - self.prev_error)
            else:
                d_error = 0
            # Avoid jumps
            if d_error < 10.0:
                if error < -self.v_margin:
                    # Too near
                    v = self.v_PID.processError(error, verbose=True)
                    cprint.warn('  Distance: %d px (too near) >> VX = %.3f m/s' % (distance, v))
                    # Avoid overswitching
                    if not self.margin_expanded:
                        self.v_margin = self.v_margin - 5
                        self.margin_expanded = True

                    self.margin_expanded = True
                    cprint.info("New margin: %d" % (self.v_margin))

                elif error > self.v_margin:
                    # Too far
                    v = self.v_PID.processError(error, verbose=True)
                    cprint.warn('  Distance: %d px (too far) >> VX = %.3f m/s' % (distance, v))
                    # Avoid overswitching
                    if not self.margin_expanded:
                        self.v_margin = self.v_margin - 5
                        self.margin_expanded = True
                    cprint.info("New margin: %d" % (self.v_margin))

                else:
                    # Inside range (OK)
                    cprint.ok('  Distance: %d px (under control)' % (distance))
                    self.v_PID.resetError()
                    self.v_PID.brake()

                    if self.margin_expanded and error < self.original_v_margin:
                        # The margin can be restored...
                        cprint.info("Margin restored.")
                        self.v_margin = self.original_v_margin
                        self.margin_expanded = False

            self.prev_error = error

            # Now, we compute the necessary turning
            ################################
            ############### w ##############
            ################################

            mom_center = (mom_box[2] + mom_box[0]) / 2
            h_error = self.center_coords[0] - mom_center

            if abs(h_error) > self.w_margin:
                # Turning...
                w = self.w_PID.processError(h_error, verbose=False)
                if w < 0:
                    turn_dir = 'right'
                else:
                    turn_dir = 'left'

                cprint.warn('  Angle: %d px >> Turning %s (w: %.3f r/s)' % (h_error, turn_dir, w))
            else:
                # Inside the angle margin (OK)
                cprint.ok('  Angle: %d px (under control)' % (h_error))
                self.w_PID.resetError()
                self.w_PID.brake()

        # Network outputs. Exclusively high score people detections.
        self.detection_boxes = self.network.boxes
        self.detection_scores = self.network.scores

        # num_detections = len(self.detection_boxes)
        # We retrieve every detected face on the current frame.
        self.persons = self.person_tracker.evalPersons(self.detection_boxes, self.detection_scores, full_image)
        # Now, we look for faces in those persons.
        print ""
        self.faces = self.person_tracker.getFaces(full_image)
        cprint.info('\t........%d/%d faces detected........' % (len(self.faces), len(self.persons)))

        mom_found_now = False
        # Iteration over all faces and persons...
        for idx in range(len(self.persons)):
            person = self.persons[idx]
            if person.is_mom:
                self.mom_coords = person.coords
                mom_found_now = True
                break
            else:
                faces = person.ftrk.tracked_faces
                if len(faces) > 0:
                    face = faces[0]
                    [f_width, f_height] = [face[2] - face[0], face[3] - face[1]]
                    f_total_box = np.zeros(4, dtype=np.int16)
                    f_total_box[:2] = person[:2] + face[:2]
                    f_total_box[2:4] = f_total_box[:2] + [f_width, f_height]
                    cropped_face = full_image[f_total_box[1]:f_total_box[3], f_total_box[0]:f_total_box[2], :]
                    # We compute the likelihood with mom...
                    dist_to_mom = self.siamese_network.distanceToMom(cropped_face)
                    if dist_to_mom < self.face_thres:
                        # Unset other moms
                        for idx2 in range(len(self.persons)):
                            self.person_tracker.tracked_persons[idx2].is_mom = False
                        # And set that person to mom.
                        self.person_tracker.tracked_persons[idx].is_mom = True
                        self.mom_coords = person.coords
                        mom_found_now = True
                        break

        # If mom is being tracked, we move the robot towards it.
        if mom_found_now:
            cprint.ok("\t\t  Mom found")
            goToMom(self.mom_coords)
        else:
            cprint.warn("\t\t  Looking for mom...")
            self.v_PID.lostResponse()
            self.w_PID.lostResponse()
    def __init__(self, arch, input_shape, frozen_graph=None, graph_def=None, dataset='coco', confidence_threshold=0.5, path_to_root=None):
        labels_file, max_num_classes = LABELS_DICT[dataset]
        # Append dir if provided (calling from another directory)
        if path_to_root is not None:
            labels_file = path.join(path_to_root, labels_file)
        label_map = label_map_util.load_labelmap(labels_file) # loads the labels map.
        categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=max_num_classes)
        category_index = label_map_util.create_category_index(categories)
        self.classes = {k:str(v['name']) for k, v in category_index.items()}
        # Find person index
        for idx, class_ in self.classes.items():
            if class_ == 'person':
                self.person_class = idx
                break


        # Graph load. We allocate the session attribute
        self.sess = None

        if frozen_graph is not None:
            # Read the graph def from a .pb file
            graph_def = tf.compat.v1.GraphDef()
            cprint.info(f'Loading the graph def from {frozen_graph}')
            with tf.io.gfile.GFile(frozen_graph, 'rb') as f:
                graph_def.ParseFromString(f.read())

            self.load_graphdef(graph_def)

        elif graph_def is not None:
            cprint.info('Loading the provided graph def...')

            self.load_graphdef(graph_def)

        else:
            # No graph def was provided!
            cprint.fatal('The graph definition has not been loaded.', interrupt=True)


        self.input_shape = input_shape
        self.arch = arch

        # Dummy tensor to be used for the first inference.
        dummy_tensor = np.zeros((1,*self.input_shape), dtype=np.int32)

        # Set placeholders, depending on the network architecture
        cprint.warn(f'Network architecture: {self.arch}')
        if self.arch == 'ssd':
            # Inputs
            self.image_tensor      = self.sess.graph.get_tensor_by_name('image_tensor:0')
            # Outputs
            self.detection_boxes   = self.sess.graph.get_tensor_by_name('detection_boxes:0')
            self.detection_scores  = self.sess.graph.get_tensor_by_name('detection_scores:0')
            self.detection_classes = self.sess.graph.get_tensor_by_name('detection_classes:0')
            self.num_detections    = self.sess.graph.get_tensor_by_name('num_detections:0')
            self.boxes = []
            self.scores = []
            self.predictions = []

            self.output_tensors = [self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections]

            self.dummy_feed = {self.image_tensor: dummy_tensor}

        elif self.arch in ['yolov3', 'yolov3tiny']:
            # Inputs
            self.inputs = self.sess.graph.get_tensor_by_name('inputs:0')
            # Outputs
            self.output_boxes = self.sess.graph.get_tensor_by_name('output_boxes:0')

            self.output_tensors = [self.output_boxes]
            self.dummy_feed = {self.inputs: dummy_tensor}

        elif self.arch == 'face_yolo':
            # Inputs
            self.input = self.sess.graph.get_tensor_by_name('img:0')
            self.training = self.sess.graph.get_tensor_by_name('training:0')
            # Outputs
            self.prob = self.sess.graph.get_tensor_by_name('prob:0')
            self.x_center = self.sess.graph.get_tensor_by_name('x_center:0')
            self.y_center = self.sess.graph.get_tensor_by_name('y_center:0')
            self.w = self.sess.graph.get_tensor_by_name('w:0')
            self.h = self.sess.graph.get_tensor_by_name('h:0')

            self.output_tensors = [self.prob, self.x_center, self.y_center, self.w, self.h]
            self.dummy_feed = {self.input: dummy_tensor, self.training: False}

        elif self.arch == 'face_corrector':
            # Inputs
            self.input = self.sess.graph.get_tensor_by_name('img:0')
            self.training = self.sess.graph.get_tensor_by_name('training:0')
            # Outputs
            self.X = self.sess.graph.get_tensor_by_name('X:0')
            self.Y = self.sess.graph.get_tensor_by_name('Y:0')
            self.W = self.sess.graph.get_tensor_by_name('W:0')
            self.H = self.sess.graph.get_tensor_by_name('H:0')
            self.output_tensors = [self.X, self.Y, self.W, self.H]
            self.dummy_feed = {self.input: dummy_tensor, self.training: False}

        elif self.arch == 'facenet':
            # Inputs
            self.input = self.sess.graph.get_tensor_by_name('input:0')
            self.phase_train = self.sess.graph.get_tensor_by_name('phase_train:0')
            # Outputs
            self.embeddings = self.sess.graph.get_tensor_by_name('embeddings:0')
            self.output_tensors = [self.embeddings]
            self.dummy_feed = {self.input: dummy_tensor, self.phase_train: False}

        else:
            cprint.fatal(f'Architecture {arch} is not supported', interrupt=True)
        # First (slower) inference
        cprint.info("Performing first inference...")
        self._forward_pass(self.dummy_feed)

        self.confidence_threshold = confidence_threshold
        cprint.ok("Detection network ready!")