示例#1
0
def test_normal_inverse_gamma_mv_probability_vs_all():
    models = {
        "A": NormalInverseGammaModel(loc=5.5,
                                     variance_scale=3,
                                     shape=14,
                                     scale=5),
        "B": NormalInverseGammaModel(loc=6.0,
                                     variance_scale=4,
                                     shape=12,
                                     scale=9),
        "C": NormalInverseGammaModel(loc=6.5,
                                     variance_scale=4,
                                     shape=13,
                                     scale=4)
    }

    mvtest = NormalInverseGammaMVTest(models, 1000000)

    assert mvtest.probability_vs_all(method="quad", variant="B") == approx(
        (0.1703097379, 0.9576994541), rel=1e-8)

    assert mvtest.probability_vs_all(method="MLHS", variant="B") == approx(
        (0.1703097379, 0.9576994541), rel=1e-2)

    assert mvtest.probability_vs_all(method="MC", variant="B") == approx(
        (0.1703097379, 0.9576994541), rel=1e-1)
示例#2
0
def test_normal_inverse_gamma_ab_probability():
    modelA = NormalInverseGammaModel(loc=5.5,
                                     variance_scale=3,
                                     shape=14,
                                     scale=5)
    modelB = NormalInverseGammaModel(loc=6.0,
                                     variance_scale=4,
                                     shape=12,
                                     scale=9)
    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)

    assert abtest.probability(method="exact", variant="A") == approx(
        (0.1899299893, 0.0304179682), rel=1e-8)

    assert abtest.probability(method="MC", variant="A") == approx(
        (0.1899299893, 0.0304179682), rel=1e-1)

    assert abtest.probability(method="exact", variant="B") == approx(
        (0.8100700106, 0.9695820317), rel=1e-8)

    assert abtest.probability(method="MC", variant="B") == approx(
        (0.8100700106, 0.9695820317), rel=1e-1)

    test = abtest.probability(method="exact", variant="all")
    assert test[0] == approx((0.1899299893, 0.0304179682), rel=1e-8)
    assert test[1] == approx((0.8100700106, 0.9695820317), rel=1e-8)

    test = abtest.probability(method="MC", variant="all")
    assert test[0] == approx((0.1899299893, 0.0304179682), rel=1e-1)
    assert test[1] == approx((0.8100700106, 0.9695820317), rel=1e-1)
示例#3
0
def test_normal_inverse_gamma_mv_expected_loss_relative_vs_all():
    models = {
        "A": NormalInverseGammaModel(loc=5.5,
                                     variance_scale=3,
                                     shape=14,
                                     scale=5),
        "B": NormalInverseGammaModel(loc=6.0,
                                     variance_scale=4,
                                     shape=12,
                                     scale=9),
        "C": NormalInverseGammaModel(loc=6.5,
                                     variance_scale=4,
                                     shape=13,
                                     scale=4)
    }

    mvtest = NormalInverseGammaMVTest(models)

    assert mvtest.expected_loss_relative_vs_all(
        method="quad", variant="B") == approx((0.0899512084, -0.4408522400),
                                              rel=1e-8)

    assert mvtest.expected_loss_relative_vs_all(
        method="MLHS", variant="B") == approx((0.0899512084, -0.4408522400),
                                              rel=1e-2)

    assert mvtest.expected_loss_relative_vs_all(
        method="MC", variant="B") == approx((0.0899512084, -0.4408522400),
                                            abs=1e-1)
示例#4
0
def test_normal_inverse_gamma_mv_expected_loss_vs_all():
    models = {
        "A": NormalInverseGammaModel(loc=5.5,
                                     variance_scale=3,
                                     shape=14,
                                     scale=5),
        "B": NormalInverseGammaModel(loc=6.0,
                                     variance_scale=4,
                                     shape=12,
                                     scale=9),
        "C": NormalInverseGammaModel(loc=6.5,
                                     variance_scale=4,
                                     shape=13,
                                     scale=4)
    }

    mvtest = NormalInverseGammaMVTest(models)

    assert mvtest.expected_loss_vs_all(method="quad", variant="B") == approx(
        (0.5523567136, 0.003998194879), rel=1e-8)

    assert mvtest.expected_loss_vs_all(method="MLHS", variant="B") == approx(
        (0.5523567136, 0.003998194879), rel=1e-1)

    assert mvtest.expected_loss_vs_all(method="MC", variant="B") == approx(
        (0.5523567136, 0.003998194879), abs=1e-1)
示例#5
0
def test_normal_inverse_gamma_mv_expected_loss_relative():
    modelA = NormalInverseGammaModel(loc=5.5,
                                     variance_scale=3,
                                     shape=14,
                                     scale=5)
    modelB = NormalInverseGammaModel(loc=6.0,
                                     variance_scale=4,
                                     shape=12,
                                     scale=9)
    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)
    mvtest = NormalInverseGammaMVTest({"A": modelA, "B": modelB}, 1000000)

    ab_result = abtest.expected_loss_relative(method="exact", variant="A")
    mv_result = mvtest.expected_loss_relative(method="exact",
                                              control="B",
                                              variant="A")

    assert ab_result == approx(mv_result, rel=1e-8)

    ab_result = abtest.expected_loss_relative(method="MC", variant="A")
    mv_result = mvtest.expected_loss_relative(method="MC",
                                              control="B",
                                              variant="A")

    assert ab_result == approx(mv_result, rel=1e-1)

    ab_result = abtest.expected_loss_relative(method="exact", variant="B")
    mv_result = mvtest.expected_loss_relative(method="exact", variant="B")

    assert ab_result == approx(mv_result, rel=1e-8)

    ab_result = abtest.expected_loss_relative(method="MC", variant="B")
    mv_result = mvtest.expected_loss_relative(method="MC", variant="B")

    assert ab_result == approx(mv_result, rel=1e-1)
示例#6
0
def test_normal_inverse_gamma_ab_expected_loss():
    modelA = NormalInverseGammaModel(loc=5.5,
                                     variance_scale=3,
                                     shape=14,
                                     scale=5)
    modelB = NormalInverseGammaModel(loc=6.0,
                                     variance_scale=4,
                                     shape=12,
                                     scale=9)
    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)

    assert abtest.expected_loss(method="exact", variant="A") == approx(
        (0.5612998985, 0.4364267115), rel=1e-8)

    assert abtest.expected_loss(method="MC", variant="A") == approx(
        (0.5612998985, 0.4364267115), rel=1e-1)

    assert abtest.expected_loss(method="exact", variant="B") == approx(
        (0.0612998985, 0.0028602780), rel=1e-8)

    assert abtest.expected_loss(method="MC", variant="B") == approx(
        (0.0612998985, 0.0028602780), rel=1e-1)

    test = abtest.expected_loss(method="exact", variant="all")
    assert test[0] == approx((0.5612998985, 0.4364267115), rel=1e-8)
    assert test[1] == approx((0.0612998985, 0.0028602780), rel=1e-8)

    test = abtest.expected_loss(method="MC", variant="all")
    assert test[0] == approx((0.5612998985, 0.4364267115), rel=1e-1)
    assert test[1] == approx((0.0612998985, 0.0028602780), rel=1e-1)
示例#7
0
def test_normal_inverse_gamma_ab_expected_loss_relative():
    modelA = NormalInverseGammaModel(loc=5.5,
                                     variance_scale=30,
                                     shape=140,
                                     scale=5)
    modelB = NormalInverseGammaModel(loc=6.0,
                                     variance_scale=40,
                                     shape=120,
                                     scale=9)
    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)

    assert abtest.expected_loss_relative(method="exact",
                                         variant="A") == approx(
                                             (0.0909523320, 1.1176470588),
                                             rel=1e-8)

    assert abtest.expected_loss_relative(method="MC", variant="A") == approx(
        (0.0909523320, 1.1176470588), rel=1e-1)

    assert abtest.expected_loss_relative(method="exact",
                                         variant="B") == approx(
                                             (-0.0832851890, -0.5203836930),
                                             rel=1e-8)

    assert abtest.expected_loss_relative(method="MC", variant="B") == approx(
        (-0.0832851890, -0.5203836930), rel=1e-1)

    test = abtest.expected_loss_relative(method="exact", variant="all")
    assert test[0] == approx((0.0909523320, 1.1176470588), rel=1e-8)
    assert test[1] == approx((-0.0832851890, -0.5203836930), rel=1e-8)

    test = abtest.expected_loss_relative(method="MC", variant="all")
    assert test[0] == approx((0.0909523320, 1.1176470588), rel=1e-1)
    assert test[1] == approx((-0.0832851890, -0.5203836930), rel=1e-1)
示例#8
0
def test_normal_inverse_gamma_ab_expected_loss_relative_ci():
    modelA = NormalInverseGammaModel(loc=5.5,
                                     variance_scale=30,
                                     shape=140,
                                     scale=5)
    modelB = NormalInverseGammaModel(loc=6.0,
                                     variance_scale=40,
                                     shape=120,
                                     scale=9)
    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)

    ci = abtest.expected_loss_relative_ci(method="exact", variant="A")
    assert ci[0] == approx([0.0771545329, 0.1047501311], rel=1e-8)
    assert ci[1] == approx([0.7123557350, 1.5802286416], rel=1e-8)

    ci = abtest.expected_loss_relative_ci(method="asymptotic", variant="A")
    assert ci[0] == approx([0.0771545329, 0.1047501311], rel=1e-1)
    assert ci[1] == approx([0.7123557350, 1.5802286416], rel=1e-1)

    ci = abtest.expected_loss_relative_ci(method="MC", variant="A")
    assert ci[0] == approx([0.0771545329, 0.1047501311], rel=1e-1)
    assert ci[1] == approx([0.7123557350, 1.5802286416], rel=1e-1)

    ci = abtest.expected_loss_relative_ci(method="exact", variant="B")
    assert ci[0] == approx([-0.0938597854, -0.0727105926], rel=1e-8)
    assert ci[1] == approx([-0.6124374468, -0.4160091974], rel=1e-8)

    ci = abtest.expected_loss_relative_ci(method="asymptotic", variant="B")
    assert ci[0] == approx([-0.0938597854, -0.0727105926], rel=1e-1)
    assert ci[1] == approx([-0.6124374468, -0.4160091974], rel=1e-1)

    ci = abtest.expected_loss_relative_ci(method="MC", variant="B")
    assert ci[0] == approx([-0.0938597854, -0.0727105926], rel=1e-1)
    assert ci[1] == approx([-0.6124374468, -0.4160091974], rel=1e-1)

    ci = abtest.expected_loss_relative_ci(method="exact", variant="all")
    assert ci[0][0] == approx([0.0771545329, 0.1047501311], rel=1e-8)
    assert ci[0][1] == approx([0.7123557350, 1.5802286416], rel=1e-8)
    assert ci[1][0] == approx([-0.0938597854, -0.0727105926], rel=1e-8)
    assert ci[1][1] == approx([-0.6124374468, -0.4160091974], rel=1e-8)

    ci = abtest.expected_loss_relative_ci(method="asymptotic", variant="all")
    assert ci[0][0] == approx([0.0771545329, 0.1047501311], rel=1e-1)
    assert ci[0][1] == approx([0.7123557350, 1.5802286416], rel=1e-1)
    assert ci[1][0] == approx([-0.0938597854, -0.0727105926], rel=1e-1)
    assert ci[1][1] == approx([-0.6124374468, -0.4160091974], rel=1e-1)

    ci = abtest.expected_loss_relative_ci(method="MC", variant="all")
    assert ci[0][0] == approx([0.0771545329, 0.1047501311], rel=1e-1)
    assert ci[0][1] == approx([0.7123557350, 1.5802286416], rel=1e-1)
    assert ci[1][0] == approx([-0.0938597854, -0.0727105926], rel=1e-1)
    assert ci[1][1] == approx([-0.6124374468, -0.4160091974], rel=1e-1)
示例#9
0
def test_normal_inverse_gamma_ab_expected_loss_small_df():
    modelA = NormalInverseGammaModel(loc=8.5,
                                     variance_scale=13,
                                     shape=1,
                                     scale=15)
    modelB = NormalInverseGammaModel(loc=8.3,
                                     variance_scale=14,
                                     shape=1,
                                     scale=17)

    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)
    assert all(np.isnan(abtest.expected_loss(method="exact", variant="A")))
    assert all(np.isnan(abtest.expected_loss(method="exact", variant="B")))
示例#10
0
def test_normal_inverse_gamma_mv_check_method():
    models = {
        "A": NormalInverseGammaModel(loc=5.5,
                                     variance_scale=3,
                                     shape=14,
                                     scale=5),
        "B": NormalInverseGammaModel(loc=6.0,
                                     variance_scale=4,
                                     shape=12,
                                     scale=9)
    }

    mvtest = NormalInverseGammaMVTest(models)

    with raises(ValueError):
        mvtest.probability(method="new")
示例#11
0
def test_normal_inverse_gamma_model_stats():
    model = NormalInverseGammaModel(loc=2, variance_scale=4, shape=3, scale=5)
    assert model.mean() == approx((2, 2.5))
    assert model.var() == approx((0.625, 6.25))
    assert model.std() == approx((0.7905694150, 2.5))
    assert model.pdf(2, 3) == approx(0.0671352013)
    assert model.pdf(0, 1) == approx(0.0001127176)
    assert model.cdf(2, 3) == approx(0.0728686739)
    assert model.cdf(0, 1) == approx(1.3337446804e-05)
示例#12
0
def test_normal_inverse_gamma_ab_probability_large_df():
    modelA = NormalInverseGammaModel(loc=8.5,
                                     variance_scale=13,
                                     shape=51,
                                     scale=15)
    modelB = NormalInverseGammaModel(loc=8.3,
                                     variance_scale=14,
                                     shape=55,
                                     scale=17)
    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)

    assert abtest.probability(method="exact", variant="A") == approx(
        (0.8256101413, 0.4004075030), rel=1e-8)

    assert abtest.probability(method="exact", variant="B") == approx(
        (0.1743898586, 0.5995924969), rel=1e-8)

    test = abtest.probability(method="exact", variant="all")
    assert test[0] == approx((0.8256101413, 0.4004075030), rel=1e-8)
    assert test[1] == approx((0.1743898586, 0.5995924969), rel=1e-8)
示例#13
0
def test_normal_inverse_gamma_mv_probability_large_df():
    modelA = NormalInverseGammaModel(loc=8.5,
                                     variance_scale=13,
                                     shape=51,
                                     scale=15)
    modelB = NormalInverseGammaModel(loc=8.3,
                                     variance_scale=14,
                                     shape=55,
                                     scale=17)

    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)
    mvtest = NormalInverseGammaMVTest({"A": modelA, "B": modelB}, 1000000)

    ab_result = abtest.probability(method="exact", variant="A")
    mv_result = mvtest.probability(method="exact", control="B", variant="A")

    ab_result = abtest.probability(method="exact", variant="B")
    mv_result = mvtest.probability(method="exact", variant="B")

    assert ab_result == approx(mv_result, rel=1e-8)
示例#14
0
def test_normal_inverse_gamma_ab_expected_loss_large_df():
    modelA = NormalInverseGammaModel(loc=8.5,
                                     variance_scale=13,
                                     shape=51,
                                     scale=15)
    modelB = NormalInverseGammaModel(loc=8.3,
                                     variance_scale=14,
                                     shape=55,
                                     scale=17)

    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)
    assert abtest.expected_loss(method="exact", variant="A") == approx(
        (0.02002397310, 0.03214606010), rel=1e-8)

    assert abtest.expected_loss(method="exact", variant="B") == approx(
        (0.2200239731, 0.01733124528), rel=1e-8)

    test = abtest.expected_loss(method="exact", variant="all")
    assert test[0] == approx((0.02002397310, 0.03214606010), rel=1e-8)
    assert test[1] == approx((0.2200239731, 0.01733124528), rel=1e-8)
示例#15
0
def test_normal_inverse_gamma_mv_expected_loss_small_df():
    modelA = NormalInverseGammaModel(loc=8.5,
                                     variance_scale=13,
                                     shape=1,
                                     scale=15)
    modelB = NormalInverseGammaModel(loc=8.3,
                                     variance_scale=14,
                                     shape=1,
                                     scale=17)

    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)
    mvtest = NormalInverseGammaMVTest({"A": modelA, "B": modelB}, 1000000)

    ab_result = abtest.expected_loss(method="exact", variant="A")
    mv_result = mvtest.expected_loss(method="exact", control="B", variant="A")

    assert all(np.isnan(ab_result)) and all(np.isnan(mv_result))

    ab_result = abtest.expected_loss(method="exact", variant="B")
    mv_result = mvtest.expected_loss(method="exact", variant="B")

    assert all(np.isnan(ab_result)) and all(np.isnan(mv_result))
示例#16
0
def test_normal_inverse_gamma_ab_expected_loss_ci():
    modelA = NormalInverseGammaModel(loc=5.5,
                                     variance_scale=30,
                                     shape=140,
                                     scale=5)
    modelB = NormalInverseGammaModel(loc=6.0,
                                     variance_scale=40,
                                     shape=120,
                                     scale=9)
    abtest = NormalInverseGammaABTest(modelA, modelB, 1000000)

    ci = abtest.expected_loss_ci(method="MC", variant="A")
    assert ci[0] == approx([0.40867227, 0.59141024], rel=1e-1)
    assert ci[1] == approx([0.02772771, 0.0526537], rel=1e-1)

    ci = abtest.expected_loss_ci(method="asymptotic", variant="A")
    assert ci[0] == approx([0.40867227, 0.59141024], rel=1e-1)
    assert ci[1] == approx([0.02772771, 0.0526537], rel=1e-1)

    ci = abtest.expected_loss_ci(method="MC", variant="B")
    assert ci[0] == approx([-0.59135194, -0.40868052], rel=1e-1)
    assert ci[1] == approx([-0.05266533, -0.02775073], rel=1e-1)

    ci = abtest.expected_loss_ci(method="asymptotic", variant="B")
    assert ci[0] == approx([-0.59135194, -0.40868052], rel=1e-1)
    assert ci[1] == approx([-0.05266533, -0.02775073], rel=1e-1)

    ci = abtest.expected_loss_ci(method="MC", variant="all")
    assert ci[0][0] == approx([0.40867227, 0.59141024], rel=1e-1)
    assert ci[0][1] == approx([0.02772771, 0.0526537], rel=1e-1)
    assert ci[1][0] == approx([-0.59135194, -0.40868052], rel=1e-1)
    assert ci[1][1] == approx([-0.05266533, -0.02775073], rel=1e-1)

    ci = abtest.expected_loss_ci(method="asymptotic", variant="all")
    assert ci[0][0] == approx([0.40867227, 0.59141024], rel=1e-1)
    assert ci[0][1] == approx([0.02772771, 0.0526537], rel=1e-1)
    assert ci[1][0] == approx([-0.59135194, -0.40868052], rel=1e-1)
    assert ci[1][1] == approx([-0.05266533, -0.02775073], rel=1e-1)
示例#17
0
def test_normal_inverse_gamma_model_priors():
    model = NormalInverseGammaModel(loc=2, variance_scale=4, shape=3, scale=5)
    assert model.variance_scale_posterior == model.variance_scale
    assert model.shape_posterior == model.shape
    assert model.scale_posterior == model.scale
示例#18
0
def test_normal_inverse_gamma_model_scale_positive():
    with raises(ValueError):
        NormalInverseGammaModel(scale=-0.1)