def __init__(self, coords, y, X, bw, family=Gaussian(), offset=None, sigma2_v1=False, kernel='bisquare', fixed=False, constant=True): """ Initialize class """ GLM.__init__(self, y, X, family, constant=constant) self.constant = constant self.sigma2_v1 = sigma2_v1 self.coords = coords self.bw = bw self.kernel = kernel self.fixed = fixed if offset is None: self.offset = np.ones((self.n, 1)) else: self.offset = offset * 1.0 self.fit_params = {} self.W = self._build_W(fixed, kernel, coords, bw) self.points = None self.exog_scale = None self.exog_resid = None self.P = None
def __init__(self, coords, y, X, bws, XB, err, family=Gaussian(), offset=None, sigma2_v1=False, kernel='bisquare', fixed=False, constant=True): """ Initialize class """ self.coords = coords self.y = y self.X = X self.XB = XB self.err = err self.bws = bws self.family = family self.offset = offset self.sigma2_v1 = sigma2_v1 self.kernel = kernel self.fixed = fixed self.constant = constant if constant: self.X = USER.check_constant(self.X)
def __init__(self, coords, y, x_loc, x_glob=None, family=Gaussian(), offset=None, kernel='bisquare', fixed=False, fb=False, constant=True): self.coords = coords self.y = y self.x_loc = x_loc if x_glob is not None: self.x_glob = x_glob else: self.x_glob = [] self.family = family self.fixed = fixed self.kernel = kernel if offset is None: self.offset = np.ones((len(y), 1)) else: self.offset = offset * 1.0 self.fb = fb self.constant = constant
def test_Prediction(self): coords = np.array(self.coords) index = np.arange(len(self.y)) #train = index[0:-10] test = index[-10:] #y_train = self.y[train] #X_train = self.X[train] #coords_train = list(coords[train]) #y_test = self.y[test] X_test = self.X[test] coords_test = list(coords[test]) model = GWR(self.coords, self.y, self.X, 93, family=Gaussian(), fixed=False, kernel='bisquare') results = model.predict(coords_test, X_test) params = np.array([ 22.77198, -0.10254, -0.215093, -0.01405, 19.10531, -0.094177, -0.232529, 0.071913, 19.743421, -0.080447, -0.30893, 0.083206, 17.505759, -0.078919, -0.187955, 0.051719, 27.747402, -0.165335, -0.208553, 0.004067, 26.210627, -0.138398, -0.360514, 0.072199, 18.034833, -0.077047, -0.260556, 0.084319, 28.452802, -0.163408, -0.14097, -0.063076, 22.353095, -0.103046, -0.226654, 0.002992, 18.220508, -0.074034, -0.309812, 0.108636 ]).reshape((10, 4)) np.testing.assert_allclose(params, results.params, rtol=1e-03) bse = np.array([ 2.080166, 0.021462, 0.102954, 0.049627, 2.536355, 0.022111, 0.123857, 0.051917, 1.967813, 0.019716, 0.102562, 0.054918, 2.463219, 0.021745, 0.110297, 0.044189, 1.556056, 0.019513, 0.12764, 0.040315, 1.664108, 0.020114, 0.131208, 0.041613, 2.5835, 0.021481, 0.113158, 0.047243, 1.709483, 0.019752, 0.116944, 0.043636, 1.958233, 0.020947, 0.09974, 0.049821, 2.276849, 0.020122, 0.107867, 0.047842 ]).reshape((10, 4)) np.testing.assert_allclose(bse, results.bse, rtol=1e-03) tvalues = np.array([ 10.947193, -4.777659, -2.089223, -0.283103, 7.532584, -4.259179, -1.877395, 1.385161, 10.033179, -4.080362, -3.012133, 1.515096, 7.106862, -3.629311, -1.704079, 1.17042, 17.831878, -8.473156, -1.633924, 0.100891, 15.750552, -6.880725, -2.74765, 1.734978, 6.980774, -3.586757, -2.302575, 1.784818, 16.644095, -8.273001, -1.205451, -1.445501, 11.414933, -4.919384, -2.272458, 0.060064, 8.00251, -3.679274, -2.872176, 2.270738 ]).reshape((10, 4)) np.testing.assert_allclose(tvalues, results.tvalues, rtol=1e-03) localR2 = np.array([[0.53068693], [0.59582647], [0.59700925], [0.45769954], [0.54634509], [0.5494828], [0.55159604], [0.55634237], [0.53903842], [0.55884954]]) np.testing.assert_allclose(localR2, results.localR2, rtol=1e-05)