print("- Test-set:\t\t{}".format(len(data.test.labels))) model = Network(img_shape=(50, 50, 1)) model.add_flat_layer() model.add_fc_layer(size=50 * 50, use_relu=True) model.add_fc_layer(size=16, use_relu=True) model.add_fc_layer(size=2, use_relu=False) model.finish_setup() model.set_data(data) model_path = os.path.join(cwd, 'results', 'models', 'crater_model_nn.ckpt') #model.restore(model_path) model.print_test_accuracy() model.optimize(epochs=20) model.save(model_path) model.print_test_accuracy() model.print_test_accuracy(show_example_errors=True) model.print_test_accuracy(show_example_errors=True, show_confusion_matrix=True) image1 = data.test.images[7] plot_image(image1) image2 = data.test.images[14] plot_image(image2)
model = Network(img_shape=(50, 50, 1)) model.add_convolutional_layer(5, 16) model.add_convolutional_layer(5, 36) model.add_flat_layer() model.add_fc_layer(size=64, use_relu=True) model.add_fc_layer(size=16, use_relu=True) model.add_fc_layer(size=2, use_relu=False) model.finish_setup() model.set_data(data) model_path = os.path.join(cwd, 'models', 'cnn', 'crater_model_cnn_mask.ckpt') # the models with _th indicate that they use positive samples extracted form theresholding images. #model.restore(model_path) model.print_test_accuracy() model.optimize(epochs=100) model.save(model_path) model.print_test_accuracy() model.print_test_accuracy(show_example_errors=True) model.print_test_accuracy(show_example_errors=True, show_confusion_matrix=True) image1 = data.test.images[7] plot_image(image1) image2 = data.test.images[14] plot_image(image2)