def main(): start_year = 1980 end_year = 2003 months_of_obs = [12, 1, 2, 3, 4, 5] r_config = RunConfig( data_path="/RESCUE/skynet3_rech1/huziy/hdf_store/quebec_0.1_crcm5-hcd-rl.hdf5", start_year=start_year, end_year=end_year, label="ERAI-CRCM5-L" ) var_name = "LC" bmp_info = analysis.get_basemap_info(r_config=r_config) lkid_to_mask = get_lake_masks(bmp_info.lons, bmp_info.lats) cell_area_m2 = analysis.get_array_from_file(path=r_config.data_path, var_name="cell_area_m2") # read the model data lkid_to_ts_model = {} for lkid, the_mask in lkid_to_mask.items(): lkid_to_ts_model[lkid] = analysis.get_area_mean_timeseries(r_config.data_path, var_name=var_name, the_mask=the_mask * cell_area_m2, start_year=start_year, end_year=end_year) df = lkid_to_ts_model[lkid] # remove the last December df = df.select(lambda d: not (d.year == end_year and d.month == 12)) # remove the first Jan and Feb df = df.select(lambda d: not (d.year == start_year and d.month in [1, 2])) # remove the Feb 29th df = df.select(lambda d: not (d.month == 2 and d.day == 29)) # select months of interest df = df.select(lambda d: d.month in months_of_obs) # calculate the climatology df = df.groupby(lambda d: datetime(2001 if d.month == 12 else 2002, d.month, d.day)).mean() df.sort_index(inplace=True) lkid_to_ts_model[lkid] = df * 100 # read obs data and calculate climatology lkid_to_ts_obs = {} for lkid in LAKE_IDS: lkid_to_ts_obs[lkid] = GL_obs_timeseries.get_ts_from_file(path=os.path.join(OBS_DATA_FOLDER, "{}-30x.TXT".format(lkid)), start_year=start_year, end_year=end_year - 1) # get the climatology dfm = lkid_to_ts_obs[lkid].mean(axis=1) dfm.index = [datetime(2001, 1, 1) + timedelta(days=int(jd - 1)) for jd in dfm.index] lkid_to_ts_obs[lkid] = dfm # plotting plot_utils.apply_plot_params(font_size=10) fig = plt.figure() gs = GridSpec(nrows=len(lkid_to_ts_model), ncols=2) for row, lkid in enumerate(lkid_to_ts_model): ax = fig.add_subplot(gs[row, 0]) mod = lkid_to_ts_model[lkid] obs = lkid_to_ts_obs[lkid] print(obs.index) print(obs.values) ax.plot(mod.index, mod.values, label=r_config.label, color="r", lw=2) ax.plot(obs.index, obs.values, label="NOAA NIC/CIS", color="k", lw=2) if row == 0: ax.legend() ax.set_title(lkid) ax.xaxis.set_major_formatter(DateFormatter("%b")) fig.tight_layout() fig.savefig(os.path.join(img_folder, "GL_ice-cover-validation.png"), bbox_inches="tight", dpi=common_plot_params.FIG_SAVE_DPI)
def main(): vname_model = "I5" nx_agg = 2 ny_agg = 2 start_year = 1980 end_year = 2006 r_config = RunConfig( data_path="/RESCUE/skynet3_rech1/huziy/hdf_store/quebec_0.1_crcm5-hcd-rl.hdf5", start_year=start_year, end_year=end_year, label="ERAI-CRCM5-L" ) bmp_info = analysis.get_basemap_info(r_config=r_config) bmp_info_agg = bmp_info.get_aggregated(nagg_x=nx_agg, nagg_y=ny_agg) season_to_months = OrderedDict([ ("Winter", [12, 1, 2]), ("Spring", [3, 4, 5]) ]) # Get the model data seasonal_clim_fields_model = analysis.get_seasonal_climatology_for_runconfig(run_config=r_config, varname=vname_model, level=0, season_to_months=season_to_months) season_to_clim_fields_model_agg = OrderedDict() for season, field in seasonal_clim_fields_model.items(): season_to_clim_fields_model_agg[season] = aggregate_array(field, nagg_x=nx_agg, nagg_y=ny_agg) # Get the EASE data obs_manager = EaseSweManager() season_to_clim_fields_obs = obs_manager.get_seasonal_clim_interpolated_to(target_lon2d=bmp_info_agg.lons, target_lat2d=bmp_info_agg.lats, season_to_months=season_to_months, start_year=start_year, end_year=end_year) # Do the plotting plot_utils.apply_plot_params(font_size=10, width_cm=16, height_cm=24) fig = plt.figure() xx, yy = bmp_info_agg.get_proj_xy() gs = GridSpec(3, len(season_to_clim_fields_model_agg) + 1, width_ratios=[1.0, ] * len(season_to_clim_fields_model_agg) + [0.05, ]) clevs = [0, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 500] norm = BoundaryNorm(clevs, 256) clevs_diff = np.arange(-100, 110, 10) cs_val = None cs_diff = None col = 0 lons_agg_copy = bmp_info_agg.lons.copy() lons_agg_copy[lons_agg_copy > 180] -= 360 lons_copy = bmp_info.lons.copy() lons_copy[lons_copy > 180] -= 360 xx1, yy1 = bmp_info.get_proj_xy() for season, mod_field in seasonal_clim_fields_model.items(): obs_field = season_to_clim_fields_obs[season] row = 0 ax = fig.add_subplot(gs[row, col]) ax.set_title(season) obs_field = maskoceans(lons_agg_copy, bmp_info_agg.lats, obs_field) cs_val = bmp_info_agg.basemap.contourf(xx, yy, obs_field, levels=clevs, norm=norm, ax=ax, extend="max") bmp_info_agg.basemap.drawcoastlines(linewidth=0.3, ax=ax) if col == 0: ax.set_ylabel("NSIDC") row += 1 ax = fig.add_subplot(gs[row, col]) mod_field = maskoceans(lons_copy, bmp_info.lats, mod_field) bmp_info.basemap.contourf(xx1, yy1, mod_field, levels=cs_val.levels, norm=cs_val.norm, ax=ax, extend="max") bmp_info.basemap.drawcoastlines(linewidth=0.3, ax=ax) if col == 0: ax.set_ylabel(r_config.label) row += 1 ax = fig.add_subplot(gs[row, col]) cs_diff = bmp_info_agg.basemap.contourf(xx, yy, season_to_clim_fields_model_agg[season] - obs_field, levels=clevs_diff, ax=ax, extend="both", cmap="seismic") bmp_info_agg.basemap.drawcoastlines(linewidth=0.3, ax=ax) if col == 0: ax.set_ylabel("{} minus {}".format(r_config.label, "NSIDC")) col += 1 # Add values colorbar ax = fig.add_subplot(gs[0, -1]) plt.colorbar(cs_val, cax=ax) ax.set_title("mm") # Add differences colorbaar ax = fig.add_subplot(gs[-1, -1]) plt.colorbar(cs_diff, cax=ax) ax.set_title("mm") fig.tight_layout() fig.savefig(os.path.join(img_folder, "NSIDC_vs_CRCM_swe.png"), dpi=common_plot_params.FIG_SAVE_DPI, bbox_inches="tight")
def main(): season_to_months = DEFAULT_SEASON_TO_MONTHS varnames = ["PR", "TT"] plot_utils.apply_plot_params(font_size=5, width_pt=None, width_cm=15, height_cm=4) reanalysis_driven_config = RunConfig(data_path="/RESCUE/skynet3_rech1/huziy/hdf_store/quebec_0.1_crcm5-hcd-rl.hdf5", start_year=1980, end_year=2010, label="ERAI-CRCM5-L") bmp_info = analysis.get_basemap_info(r_config=reanalysis_driven_config) field_cmap = cm.get_cmap("jet", 10) vname_to_clevels = { "TT": np.arange(-30, 32, 2), "PR": np.arange(0, 6.5, 0.5) } vname_to_anusplin_path = { "TT": "/home/huziy/skynet3_rech1/anusplin_links", "PR": "/home/huziy/skynet3_rech1/anusplin_links" } vname_to_cru_path = { "TT": "/HOME/data/Validation/CRU_TS_3.1/Original_files_gzipped/cru_ts_3_10.1901.2009.tmp.dat.nc", "PR": "/HOME/data/Validation/CRU_TS_3.1/Original_files_gzipped/cru_ts_3_10.1901.2009.pre.dat.nc" } xx_agg = None yy_agg = None for vname in varnames: # get anusplin obs climatology season_to_obs_anusplin = plot_performance_err_with_anusplin.get_seasonal_clim_obs_data( rconfig=reanalysis_driven_config, vname=vname, season_to_months=season_to_months, bmp_info=bmp_info) # get CRU obs values------------------------- bmp_info_agg, season_to_obs_cru = plot_performance_err_with_cru.get_seasonal_clim_obs_data( rconfig=reanalysis_driven_config, bmp_info=bmp_info, season_to_months=season_to_months, obs_path=vname_to_cru_path[vname], vname=vname ) if xx_agg is None: xx_agg, yy_agg = bmp_info_agg.get_proj_xy() # get model data seasonal_clim_fields_model = analysis.get_seasonal_climatology_for_runconfig(run_config=reanalysis_driven_config, varname=vname, level=0, season_to_months=season_to_months) ### biases_with_anusplin = OrderedDict() biases_with_cru = OrderedDict() nx_agg = 5 ny_agg = 5 season_to_clim_fields_model_agg = OrderedDict() for season, field in seasonal_clim_fields_model.items(): print(field.shape) season_to_clim_fields_model_agg[season] = aggregate_array(field, nagg_x=nx_agg, nagg_y=ny_agg) if vname == "PR": season_to_clim_fields_model_agg[season] *= 1.0e3 * 24 * 3600 biases_with_cru[season] = season_to_clim_fields_model_agg[season] - season_to_obs_cru[season] biases_with_anusplin[season] = season_to_clim_fields_model_agg[season] - aggregate_array(season_to_obs_anusplin[season], nagg_x=nx_agg, nagg_y=ny_agg) # Do the plotting fig = plt.figure() clevs = [c for c in np.arange(-0.5, 0.55, 0.05)] if vname == "PR" else np.arange(-2, 2.2, 0.2) gs = GridSpec(1, len(biases_with_cru) + 1, width_ratios=len(biases_with_cru) * [1., ] + [0.05, ]) col = 0 cs = None cmap = "seismic" fig.suptitle(r"$\left| \delta_{\rm Hopkinson} \right| - \left| \delta_{\rm CRU} \right|$") for season, cru_err in biases_with_cru.items(): anu_err = biases_with_anusplin[season] ax = fig.add_subplot(gs[0, col]) diff = np.abs(anu_err) - np.abs(cru_err) cs = bmp_info_agg.basemap.contourf(xx_agg, yy_agg, diff, levels=clevs, ax=ax, extend="both", cmap=cmap) bmp_info_agg.basemap.drawcoastlines(ax=ax, linewidth=0.3) good = diff[~diff.mask & ~np.isnan(diff)] n_neg = sum(good < 0) / sum(good > 0) print("season: {}, n-/n+ = {}".format(season, n_neg)) ax.set_title(season) ax.set_xlabel(r"$n_{-}/n_{+} = $" + "{:.1f}".format(n_neg) + "\n" + r"$\overline{\varepsilon} = $" + "{:.2f}".format(good.mean())) col += 1 ax = fig.add_subplot(gs[0, -1]) plt.colorbar(cs, cax=ax) ax.set_title("mm/day" if vname == "PR" else r"${\rm ^\circ C}$") fig.savefig(os.path.join(img_folder, "comp_anu_and_cru_biases_for_{}.png".format(vname)), bbox_inches="tight", dpi=common_plot_params.FIG_SAVE_DPI)
def main(): lkfr_limit = 0.05 model_data_current_path = "/skynet3_rech1/huziy/hdf_store/cc-canesm2-driven/" \ "quebec_0.1_crcm5-hcd-rl-cc-canesm2-1980-2010.hdf5" modif_label = "CanESM2-CRCM5-L" start_year_c = 1980 end_year_c = 2010 future_shift_years = 90 params = dict( start_year=start_year_c, end_year=end_year_c ) params.update( dict(data_path=model_data_current_path, label=modif_label) ) model_config_c = RunConfig(**params) model_config_f = model_config_c.get_shifted_config(future_shift_years) bmp_info = analysis.get_basemap_info(r_config=model_config_c) specific_cond_heat = 0.250100e7 # J/kg water_density = 1000.0 # kg/m**3 season_to_months = OrderedDict([ ("Summer", [6, 7, 8]), ]) lkfr = analysis.get_array_from_file(path="/RESCUE/skynet3_rech1/huziy/hdf_store/quebec_0.1_crcm5-hcd-rl.hdf5", var_name=infovar.HDF_LAKE_FRACTION_NAME) assert lkfr is not None, "Could not find lake fraction in the file" # Current climate traf_c = analysis.get_seasonal_climatology_for_runconfig(run_config=model_config_c, varname="TRAF", level=5, season_to_months=season_to_months) pr_c = analysis.get_seasonal_climatology_for_runconfig(run_config=model_config_c, varname="PR", level=0, season_to_months=season_to_months) lktemp_c = analysis.get_seasonal_climatology_for_runconfig(run_config=model_config_c, varname="L1", level=0, season_to_months=season_to_months) airtemp_c = analysis.get_seasonal_climatology_for_runconfig(run_config=model_config_c, varname="TT", level=0, season_to_months=season_to_months) lhc = OrderedDict([ (s, specific_cond_heat * (pr_c[s] * water_density - traf_c[s])) for s, traf in traf_c.items() ]) avc = analysis.get_seasonal_climatology_for_runconfig(run_config=model_config_c, varname="AV", level=0, season_to_months=season_to_months) plt.figure() lhc["Summer"] = np.ma.masked_where(lkfr < lkfr_limit, lhc["Summer"]) print("min: {}, max: {}".format(lhc["Summer"].min(), lhc["Summer"].max())) cs = plt.contourf(lhc["Summer"].T) plt.title("lhc") plt.colorbar() plt.figure() cs = plt.contourf(avc["Summer"].T, levels=cs.levels, norm=cs.norm, cmap=cs.cmap) plt.title("avc") plt.colorbar() # Future climate traf_f = analysis.get_seasonal_climatology_for_runconfig(run_config=model_config_f, varname="TRAF", level=5, season_to_months=season_to_months) pr_f = analysis.get_seasonal_climatology_for_runconfig(run_config=model_config_f, varname="PR", level=0, season_to_months=season_to_months) lktemp_f = analysis.get_seasonal_climatology_for_runconfig(run_config=model_config_f, varname="L1", level=0, season_to_months=season_to_months) airtemp_f = analysis.get_seasonal_climatology_for_runconfig(run_config=model_config_f, varname="TT", level=0, season_to_months=season_to_months) lhf = OrderedDict([ (s, specific_cond_heat * (pr_f[s] * water_density - traf_f[s])) for s, traf in traf_f.items() ]) plt.figure() plt.pcolormesh(traf_c["Summer"].T) plt.title("TRAF over lakes current") plt.colorbar() avf = analysis.get_seasonal_climatology_for_runconfig(run_config=model_config_f, varname="AV", level=0, season_to_months=season_to_months) plt.figure() cs = plt.contourf(avf["Summer"].T) plt.title("avf") plt.colorbar() plt.figure() cs = plt.contourf(avf["Summer"].T - avc["Summer"].T, levels=np.arange(-40, 45, 5)) plt.title("d(av)") plt.colorbar() plt.figure() plt.contourf(lhf["Summer"].T - lhc["Summer"].T, levels=cs.levels, cmap=cs.cmap, norm=cs.norm) plt.title("d(lh)") plt.colorbar() # plotting plot_utils.apply_plot_params(width_cm=15, height_cm=15, font_size=10) gs = GridSpec(2, 2) # tair_c_ts = analysis.get_area_mean_timeseries(model_config_c.data_path, var_name="TT", level_index=0, # start_year=model_config_c.start_year, end_year=model_config_c.end_year, # the_mask=lkfr >= lkfr_limit) # # tair_f_ts = analysis.get_area_mean_timeseries(model_config_f.data_path, var_name="TT", level_index=0, # start_year=model_config_f.start_year, end_year=model_config_f.end_year, # the_mask=lkfr >= lkfr_limit) # # # tlake_c_ts = analysis.get_area_mean_timeseries(model_config_c.data_path, var_name="TT", level_index=0, # start_year=model_config_c.start_year, end_year=model_config_c.end_year, # the_mask=lkfr >= lkfr_limit) # # tlake_f_ts = analysis.get_area_mean_timeseries(model_config_f.data_path, var_name="TT", level_index=0, # start_year=model_config_f.start_year, end_year=model_config_f.end_year, # the_mask=lkfr >= lkfr_limit) for season in season_to_months: fig = plt.figure() lktemp_c[season] -= 273.15 dT_c = np.ma.masked_where(lkfr < lkfr_limit, lktemp_c[season] - airtemp_c[season]) lktemp_f[season] -= 273.15 dT_f = np.ma.masked_where(lkfr < lkfr_limit, lktemp_f[season] - airtemp_f[season]) d = np.round(max(np.ma.abs(dT_c).max(), np.ma.abs(dT_f).max())) vmin = -d vmax = d clevs = np.arange(-12, 13, 1) ncolors = len(clevs) - 1 bn = BoundaryNorm(clevs, ncolors=ncolors) cmap = cm.get_cmap("seismic", ncolors) ax_list = [] fig.suptitle(season) xx, yy = bmp_info.get_proj_xy() # Current gradient ax = fig.add_subplot(gs[0, 0]) ax.set_title(r"current: $T_{\rm lake} - T_{\rm atm}$") cs = bmp_info.basemap.pcolormesh(xx, yy, dT_c, ax=ax, norm=bn, cmap=cmap) bmp_info.basemap.colorbar(cs, ax=ax, extend="both") ax_list.append(ax) # Future Gradient ax = fig.add_subplot(gs[0, 1]) ax.set_title(r"future: $T_{\rm lake} - T_{\rm atm}$") cs = bmp_info.basemap.pcolormesh(xx, yy, dT_f, ax=ax, norm=cs.norm, cmap=cs.cmap, vmin=vmin, vmax=vmax) bmp_info.basemap.colorbar(cs, ax=ax, extend="both") ax_list.append(ax) # Change in the gradient ax = fig.add_subplot(gs[1, 0]) ax.set_title(r"$\Delta T_{\rm future} - \Delta T_{\rm current}$") ddT = dT_f - dT_c d = np.round(np.ma.abs(ddT).max()) clevs = np.arange(-3, 3.1, 0.1) ncolors = len(clevs) - 1 bn = BoundaryNorm(clevs, ncolors=ncolors) cmap = cm.get_cmap("seismic", ncolors) cs = bmp_info.basemap.pcolormesh(xx, yy, ddT, norm=bn, cmap=cmap) bmp_info.basemap.colorbar(cs, ax=ax, extend="both") ax_list.append(ax) # Change in the latent heat flux # ax = fig.add_subplot(gs[1, 1]) # ax.set_title(r"$LE_{\rm future} - LE_{\rm current}$") # dlh = np.ma.masked_where(lkfr < lkfr_limit, lhf[season] - lhc[season]) # # d = np.round(np.ma.abs(dlh).max() // 10) * 10 # clevs = np.arange(0, 105, 5) # bn = BoundaryNorm(clevs, ncolors=ncolors) # cmap = cm.get_cmap("jet", ncolors) # # cs = bmp_info.basemap.pcolormesh(xx, yy, dlh, norm=bn, cmap=cmap) # bmp_info.basemap.colorbar(cs, ax=ax, extend="max") # Change in the latent heat flux # ax_list.append(ax) for the_ax in ax_list: bmp_info.basemap.drawcoastlines(linewidth=0.3, ax=the_ax) fig.tight_layout() fig.savefig(os.path.join(img_folder, "lake_atm_gradients_and_fluxes_{}-{}_{}-{}.png".format(model_config_f.start_year, model_config_f.end_year, start_year_c, end_year_c)), dpi=800, bbox_inches="tight")
def main(): if not img_folder.is_dir(): img_folder.mkdir(parents=True) season_to_months = OrderedDict([ ("Winter (DJF)", (1, 2, 12)), ("Spring (MAM)", range(3, 6)), ("Summer (JJA)", range(6, 9)), ("Fall (SON)", range(9, 12)), ]) varnames = ["TT", "PR"] plot_utils.apply_plot_params(font_size=10, width_pt=None, width_cm=20, height_cm=17) # reanalysis_driven_config = RunConfig(data_path="/RESCUE/skynet3_rech1/huziy/hdf_store/quebec_0.1_crcm5-hcd-rl.hdf5", # start_year=1980, end_year=2010, label="ERAI-CRCM5-L") # reanalysis_driven_config = RunConfig(data_path="/RESCUE/skynet3_rech1/huziy/hdf_store/quebec_0.4_crcm5-hcd-rl.hdf5", start_year=1980, end_year=2010, label="ERAI-CRCM5-L(0.4)") nx_agg_model = 1 ny_agg_model = 1 nx_agg_anusplin = 4 ny_agg_anusplin = 4 gcm_driven_config = RunConfig( data_path="/RESCUE/skynet3_rech1/huziy/hdf_store/cc-canesm2-driven/quebec_0.1_crcm5-hcd-rl-cc-canesm2-1980-2010.hdf5", start_year=1980, end_year=2010, label="CanESM2-CRCM5-L") bmp_info = analysis.get_basemap_info(r_config=reanalysis_driven_config) xx, yy = bmp_info.get_proj_xy() field_cmap = cm.get_cmap("jet", 10) vname_to_clevels = { "TT": np.arange(-30, 32, 2), "PR": np.arange(0, 6.5, 0.5) } vname_to_anusplin_path = { "TT": "/home/huziy/skynet3_rech1/anusplin_links", "PR": "/home/huziy/skynet3_rech1/anusplin_links" } vname_to_cru_path = { "TT": "/HOME/data/Validation/CRU_TS_3.1/Original_files_gzipped/cru_ts_3_10.1901.2009.tmp.dat.nc", "PR": "/HOME/data/Validation/CRU_TS_3.1/Original_files_gzipped/cru_ts_3_10.1901.2009.pre.dat.nc" } for vname in varnames: fig = plt.figure() ncols = len(season_to_months) gs = GridSpec(4, ncols + 1, width_ratios=ncols * [1., ] + [0.09, ]) clevels = vname_to_clevels[vname] # get anusplin obs climatology season_to_obs_anusplin = plot_performance_err_with_anusplin.get_seasonal_clim_obs_data( rconfig=reanalysis_driven_config, vname=vname, season_to_months=season_to_months, bmp_info=bmp_info, n_agg_x=nx_agg_anusplin, n_agg_y=ny_agg_anusplin) row = 0 # Plot CRU values------------------------- bmp_info_agg, season_to_obs_cru = plot_performance_err_with_cru.get_seasonal_clim_obs_data( rconfig=reanalysis_driven_config, bmp_info=bmp_info, season_to_months=season_to_months, obs_path=vname_to_cru_path[vname], vname=vname ) # Mask out the Great Lakes cru_mask = get_mask(bmp_info_agg.lons, bmp_info_agg.lats, shp_path=os.path.join(GL_SHP_FOLDER, "gl_cst.shp")) for season in season_to_obs_cru: season_to_obs_cru[season] = np.ma.masked_where(cru_mask > 0.5, season_to_obs_cru[season]) ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] cs = None xx_agg, yy_agg = bmp_info_agg.get_proj_xy() for j, (season, obs_field) in enumerate(season_to_obs_cru.items()): ax = ax_list[j] cs = bmp_info_agg.basemap.contourf(xx_agg, yy_agg, obs_field.copy(), levels=clevels, ax=ax) bmp_info.basemap.drawcoastlines(ax=ax) bmp_info.basemap.readshapefile(BASIN_BOUNDARIES_SHP[:-4], "basin", ax=ax) ax.set_title(season) ax_list[0].set_ylabel("CRU") # plt.colorbar(cs, caax=ax_list[-1]) row += 1 # Plot ANUSPLIN values------------------------- ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] cs = None for j, (season, obs_field) in enumerate(season_to_obs_anusplin.items()): ax = ax_list[j] cs = bmp_info.basemap.contourf(xx, yy, obs_field, levels=clevels, ax=ax) bmp_info.basemap.drawcoastlines(ax=ax) bmp_info.basemap.readshapefile(BASIN_BOUNDARIES_SHP[:-4], "basin", ax=ax) ax.set_title(season) ax_list[0].set_ylabel("Hopkinson") cb = plt.colorbar(cs, cax=fig.add_subplot(gs[:2, -1])) cb.ax.set_xlabel(infovar.get_units(vname)) _format_axes(ax_list, vname=vname) row += 1 # Plot model (CRCM) values------------------------- # ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] # cs = None # # season_to_field_crcm = analysis.get_seasonal_climatology_for_runconfig(run_config=reanalysis_driven_config, # varname=vname, level=0, # season_to_months=season_to_months) # # for j, (season, crcm_field) in enumerate(season_to_field_crcm.items()): # ax = ax_list[j] # cs = bmp_info.basemap.contourf(xx, yy, crcm_field * 1000 * 24 * 3600, levels=clevels, ax=ax) # bmp_info.basemap.drawcoastlines(ax=ax) # bmp_info.basemap.readshapefile(BASIN_BOUNDARIES_SHP[:-4], "basin", ax=ax) # ax.set_title(season) # # ax_list[0].set_ylabel(reanalysis_driven_config.label) # cb = plt.colorbar(cs, cax=fig.add_subplot(gs[:2, -1])) # cb.ax.set_xlabel(infovar.get_units(vname)) # _format_axes(ax_list, vname=vname) # row += 1 # Plot (Model - CRU) Performance biases------------------------- ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] cs = plot_performance_err_with_cru.compare_vars(vname_model=vname, vname_obs=None, r_config=reanalysis_driven_config, season_to_months=season_to_months, obs_path=vname_to_cru_path[vname], bmp_info_agg=bmp_info_agg, diff_axes_list=ax_list, mask_shape_file=os.path.join(GL_SHP_FOLDER, "gl_cst.shp"), nx_agg_model=nx_agg_model, ny_agg_model=ny_agg_model) ax_list[0].set_ylabel("{label}\n--\nCRU".format(label=reanalysis_driven_config.label)) _format_axes(ax_list, vname=vname) row += 1 # Plot performance+BFE errors with respect to CRU (Model - CRU)------------------------- # ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] # plot_performance_err_with_cru.compare_vars(vname, vname_obs=None, obs_path=vname_to_cru_path[vname], # r_config=gcm_driven_config, # bmp_info_agg=bmp_info_agg, season_to_months=season_to_months, # axes_list=ax_list) # _format_axes(ax_list, vname=vname) # ax_list[0].set_ylabel("{label}\nvs\nCRU".format(label=gcm_driven_config.label)) # row += 1 # Plot performance errors with respect to ANUSPLIN (Model - ANUSPLIN)------------------------- ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] plot_performance_err_with_anusplin.compare_vars(vname, {vname: season_to_obs_anusplin}, r_config=reanalysis_driven_config, bmp_info_agg=bmp_info, season_to_months=season_to_months, axes_list=ax_list) _format_axes(ax_list, vname=vname) ax_list[0].set_ylabel("{label}\n--\nHopkinson".format(label=reanalysis_driven_config.label)) row += 1 # Plot performance+BFE errors with respect to ANUSPLIN (Model - ANUSPLIN)------------------------- # ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] # plot_performance_err_with_anusplin.compare_vars(vname, {vname: season_to_obs_anusplin}, # r_config=gcm_driven_config, # bmp_info_agg=bmp_info, season_to_months=season_to_months, # axes_list=ax_list) # _format_axes(ax_list, vname=vname) # ax_list[0].set_ylabel("{label}\nvs\nHopkinson".format(label=gcm_driven_config.label)) cb = plt.colorbar(cs, cax=fig.add_subplot(gs[-2:, -1])) cb.ax.set_xlabel(infovar.get_units(vname)) # Save the plot img_file = "{vname}_{sy}-{ey}_{sim_label}.png".format( vname=vname, sy=reanalysis_driven_config.start_year, ey=reanalysis_driven_config.end_year, sim_label=reanalysis_driven_config.label) img_file = img_folder.joinpath(img_file) with img_file.open("wb") as f: fig.savefig(f, bbox_inches="tight") plt.close(fig)
def main(): if not img_folder.is_dir(): img_folder.mkdir(parents=True) season_to_months = OrderedDict([ ("Winter (DJF)", (1, 2, 12)), ("Spring (MAM)", range(3, 6)), ("Summer (JJA)", range(6, 9)), ("Fall (SON)", range(9, 12)), ]) varnames = ["TT", "PR"] plot_utils.apply_plot_params(font_size=10, width_pt=None, width_cm=20, height_cm=17) # reanalysis_driven_config = RunConfig(data_path="/RESCUE/skynet3_rech1/huziy/hdf_store/quebec_0.1_crcm5-hcd-rl.hdf5", # start_year=1980, end_year=2010, label="ERAI-CRCM5-L") # reanalysis_driven_config = RunConfig( data_path= "/RESCUE/skynet3_rech1/huziy/hdf_store/quebec_0.4_crcm5-hcd-rl.hdf5", start_year=1980, end_year=2010, label="ERAI-CRCM5-L(0.4)") nx_agg_model = 1 ny_agg_model = 1 nx_agg_anusplin = 4 ny_agg_anusplin = 4 gcm_driven_config = RunConfig( data_path= "/RESCUE/skynet3_rech1/huziy/hdf_store/cc-canesm2-driven/quebec_0.1_crcm5-hcd-rl-cc-canesm2-1980-2010.hdf5", start_year=1980, end_year=2010, label="CanESM2-CRCM5-L") bmp_info = analysis.get_basemap_info(r_config=reanalysis_driven_config) xx, yy = bmp_info.get_proj_xy() field_cmap = cm.get_cmap("jet", 10) vname_to_clevels = { "TT": np.arange(-30, 32, 2), "PR": np.arange(0, 6.5, 0.5) } vname_to_anusplin_path = { "TT": "/home/huziy/skynet3_rech1/anusplin_links", "PR": "/home/huziy/skynet3_rech1/anusplin_links" } vname_to_cru_path = { "TT": "/HOME/data/Validation/CRU_TS_3.1/Original_files_gzipped/cru_ts_3_10.1901.2009.tmp.dat.nc", "PR": "/HOME/data/Validation/CRU_TS_3.1/Original_files_gzipped/cru_ts_3_10.1901.2009.pre.dat.nc" } for vname in varnames: fig = plt.figure() ncols = len(season_to_months) gs = GridSpec(4, ncols + 1, width_ratios=ncols * [ 1., ] + [ 0.09, ]) clevels = vname_to_clevels[vname] # get anusplin obs climatology season_to_obs_anusplin = plot_performance_err_with_anusplin.get_seasonal_clim_obs_data( rconfig=reanalysis_driven_config, vname=vname, season_to_months=season_to_months, bmp_info=bmp_info, n_agg_x=nx_agg_anusplin, n_agg_y=ny_agg_anusplin) row = 0 # Plot CRU values------------------------- bmp_info_agg, season_to_obs_cru = plot_performance_err_with_cru.get_seasonal_clim_obs_data( rconfig=reanalysis_driven_config, bmp_info=bmp_info, season_to_months=season_to_months, obs_path=vname_to_cru_path[vname], vname=vname) # Mask out the Great Lakes cru_mask = get_mask(bmp_info_agg.lons, bmp_info_agg.lats, shp_path=os.path.join(GL_SHP_FOLDER, "gl_cst.shp")) for season in season_to_obs_cru: season_to_obs_cru[season] = np.ma.masked_where( cru_mask > 0.5, season_to_obs_cru[season]) ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] cs = None xx_agg, yy_agg = bmp_info_agg.get_proj_xy() for j, (season, obs_field) in enumerate(season_to_obs_cru.items()): ax = ax_list[j] cs = bmp_info_agg.basemap.contourf(xx_agg, yy_agg, obs_field.copy(), levels=clevels, ax=ax) bmp_info.basemap.drawcoastlines(ax=ax) bmp_info.basemap.readshapefile(BASIN_BOUNDARIES_SHP[:-4], "basin", ax=ax) ax.set_title(season) ax_list[0].set_ylabel("CRU") # plt.colorbar(cs, caax=ax_list[-1]) row += 1 # Plot ANUSPLIN values------------------------- ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] cs = None for j, (season, obs_field) in enumerate(season_to_obs_anusplin.items()): ax = ax_list[j] cs = bmp_info.basemap.contourf(xx, yy, obs_field, levels=clevels, ax=ax) bmp_info.basemap.drawcoastlines(ax=ax) bmp_info.basemap.readshapefile(BASIN_BOUNDARIES_SHP[:-4], "basin", ax=ax) ax.set_title(season) ax_list[0].set_ylabel("Hopkinson") cb = plt.colorbar(cs, cax=fig.add_subplot(gs[:2, -1])) cb.ax.set_xlabel(infovar.get_units(vname)) _format_axes(ax_list, vname=vname) row += 1 # Plot model (CRCM) values------------------------- # ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] # cs = None # # season_to_field_crcm = analysis.get_seasonal_climatology_for_runconfig(run_config=reanalysis_driven_config, # varname=vname, level=0, # season_to_months=season_to_months) # # for j, (season, crcm_field) in enumerate(season_to_field_crcm.items()): # ax = ax_list[j] # cs = bmp_info.basemap.contourf(xx, yy, crcm_field * 1000 * 24 * 3600, levels=clevels, ax=ax) # bmp_info.basemap.drawcoastlines(ax=ax) # bmp_info.basemap.readshapefile(BASIN_BOUNDARIES_SHP[:-4], "basin", ax=ax) # ax.set_title(season) # # ax_list[0].set_ylabel(reanalysis_driven_config.label) # cb = plt.colorbar(cs, cax=fig.add_subplot(gs[:2, -1])) # cb.ax.set_xlabel(infovar.get_units(vname)) # _format_axes(ax_list, vname=vname) # row += 1 # Plot (Model - CRU) Performance biases------------------------- ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] cs = plot_performance_err_with_cru.compare_vars( vname_model=vname, vname_obs=None, r_config=reanalysis_driven_config, season_to_months=season_to_months, obs_path=vname_to_cru_path[vname], bmp_info_agg=bmp_info_agg, diff_axes_list=ax_list, mask_shape_file=os.path.join(GL_SHP_FOLDER, "gl_cst.shp"), nx_agg_model=nx_agg_model, ny_agg_model=ny_agg_model) ax_list[0].set_ylabel( "{label}\n--\nCRU".format(label=reanalysis_driven_config.label)) _format_axes(ax_list, vname=vname) row += 1 # Plot performance+BFE errors with respect to CRU (Model - CRU)------------------------- # ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] # plot_performance_err_with_cru.compare_vars(vname, vname_obs=None, obs_path=vname_to_cru_path[vname], # r_config=gcm_driven_config, # bmp_info_agg=bmp_info_agg, season_to_months=season_to_months, # axes_list=ax_list) # _format_axes(ax_list, vname=vname) # ax_list[0].set_ylabel("{label}\nvs\nCRU".format(label=gcm_driven_config.label)) # row += 1 # Plot performance errors with respect to ANUSPLIN (Model - ANUSPLIN)------------------------- ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] plot_performance_err_with_anusplin.compare_vars( vname, {vname: season_to_obs_anusplin}, r_config=reanalysis_driven_config, bmp_info_agg=bmp_info, season_to_months=season_to_months, axes_list=ax_list) _format_axes(ax_list, vname=vname) ax_list[0].set_ylabel("{label}\n--\nHopkinson".format( label=reanalysis_driven_config.label)) row += 1 # Plot performance+BFE errors with respect to ANUSPLIN (Model - ANUSPLIN)------------------------- # ax_list = [fig.add_subplot(gs[row, j]) for j in range(ncols)] # plot_performance_err_with_anusplin.compare_vars(vname, {vname: season_to_obs_anusplin}, # r_config=gcm_driven_config, # bmp_info_agg=bmp_info, season_to_months=season_to_months, # axes_list=ax_list) # _format_axes(ax_list, vname=vname) # ax_list[0].set_ylabel("{label}\nvs\nHopkinson".format(label=gcm_driven_config.label)) cb = plt.colorbar(cs, cax=fig.add_subplot(gs[-2:, -1])) cb.ax.set_xlabel(infovar.get_units(vname)) # Save the plot img_file = "{vname}_{sy}-{ey}_{sim_label}.png".format( vname=vname, sy=reanalysis_driven_config.start_year, ey=reanalysis_driven_config.end_year, sim_label=reanalysis_driven_config.label) img_file = img_folder.joinpath(img_file) with img_file.open("wb") as f: fig.savefig(f, bbox_inches="tight") plt.close(fig)