def test_fit_transform(): """ Assert that fit_one and transform_one methods returns waited ouput. """ lda = LDA(n_components=2, number_of_documents=60, vocab_prune_interval=2, maximum_size_vocabulary=3, seed=42) components_list = [] for document in DOC_SET: tokens = {token: 1 for token in document.split(' ')} lda = lda.fit_one(x=tokens) components_list.append(lda.transform_one(x=tokens)) for index, component in enumerate(components_list): assert np.array_equal(a1=list(component.values()), a2=REFERENCE_FIT_ONE_PREDICT_ONE[index])
def test_fit_transform(): ''' Assert that fit_one and transform_one methods returns waited ouput. ''' np.random.seed(42) online_lda = LDA( n_components=2, number_of_documents=60, vocab_prune_interval=2, maximum_size_vocabulary=3, ) components_list = [] for document in DOC_SET: online_lda = online_lda.fit_one(x=document) components_list.append(online_lda.transform_one(x=document)) for index, component in enumerate(components_list): assert np.array_equal(a1=list(component.values()), a2=REFERENCE_FIT_ONE_PREDICT_ONE[index])