cnv = cnv_obj.filter(subset=list(prot))
    cnv_norm = np.log2(cnv.divide(prot_obj.ss.loc[cnv.columns, "ploidy"]) + 1)
    LOG.info(f"Copy number: {cnv.shape}")

    # Overlaps
    #
    samples = list(set.intersection(set(prot), set(gexp), set(cnv)))
    genes = list(
        set.intersection(set(prot.index), set(gexp.index), set(cnv.index),
                         set(prot_broad.index)))
    LOG.info(f"Genes: {len(genes)}; Samples: {len(samples)}")

    # Data tranformations
    #
    gexp_t = pd.DataFrame(
        {i: Utils.gkn(gexp.loc[i].dropna()).to_dict()
         for i in genes}).T

    ##
    #
    s_corr = pd.DataFrame({
        s1: {
            s2: two_vars_correlation(prot[s1], gexp[s2])["corr"]
            for s2 in samples
        }
        for s1 in samples
    })
    s_corr.to_csv(
        "/Users/Downloads/Proteomics_Transcriptomics_Corr_Matrix.csv")

    # Sample-wise Protein/Gene correlation with CopyNumber - Attenuation
        stromal_count != 1].index)]

    # Import proteomics data-sets
    #
    dmatrix, ms_type, ctypes = [], [], []
    for ctype, dfile in CPTAC_DATASETS:
        df = pd.read_csv(f"{CPTAC_DPATH}/linkedomics/{dfile}",
                         sep="\t",
                         index_col=0)

        if "COADREAD" in dfile:
            df = df.replace(0, np.nan)
            df = df.pipe(np.log2)

        df = pd.DataFrame(
            {i: Utils.gkn(df.loc[i].dropna()).to_dict()
             for i in df.index}).T

        # Simplify barcode
        df.columns = [i[:12].replace(".", "-") for i in df]

        # Cancer type
        ctypes.append(pd.Series(ctype, index=df.columns))

        # MS type
        ms_type.append(
            pd.Series("LF" if "COADREAD" in dfile else "TMT",
                      index=df.columns))

        dmatrix.append(df)