示例#1
0
 def _compute_all_benchmarks(self):
     for test_case in self.test_cases:
         test_path = self.test_path + '/' + self.actual_folder + '/' + test_case + '.xml'
         reference = Beamlet(data_path=test_path, solver='disregard')
         actual_source = reference.copy(object_copy='without-results')
         actual = Beamlet(param=actual_source.param,
                          profiles=actual_source.profiles,
                          components=actual_source.components,
                          atomic_db=actual_source.atomic_db,
                          solver='numerical')
         actual.compute_linear_density_attenuation()
         actual.compute_linear_emission_density()
         actual.compute_relative_populations()
         self.write.write_beamlet_profiles(actual,
                                           subdir=self.release_folder + '/')
示例#2
0
 def test_actual_to_previous_release(self):
     for test_case in self.test_cases:
         path = os.path.join('test_dataset', 'crm_systemtests', 'actual',
                             test_case + '.xml')
         reference = Beamlet(data_path=path, solver='disregard')
         actual_source = reference.copy(object_copy='without-results')
         actual = Beamlet(param=actual_source.param,
                          profiles=actual_source.profiles,
                          components=actual_source.components,
                          atomic_db=actual_source.atomic_db,
                          solver='numerical')
         msg = 'Failure for following test case: ' + test_case + '\n'
         self.assertAlmostEqualRateEvolution(
             actual, reference, precision=self.EXPECTED_PRECISION, msg=msg)
         actual.compute_linear_density_attenuation()
         self.assertAlmostEqualBeamAttenuation(
             actual, reference, precision=self.EXPECTED_PRECISION, msg=msg)
         actual.compute_linear_emission_density()
         self.assertAlmostEqualEmissionDensity(
             actual, reference, precision=self.EXPECTED_PRECISION, msg=msg)
         actual.compute_relative_populations()
         self.assertAlmostEqualRelativePopulation(
             actual, reference, precision=self.EXPECTED_PRECISION, msg=msg)
xml = etree.Element('xml')
head = etree.SubElement(xml, 'head')
id_tag = etree.SubElement(head, 'id')
id_tag.text = 'beamlet_test'
body_tag = etree.SubElement(xml, 'body')
beamlet_energy = etree.SubElement(body_tag, 'beamlet_energy', {'unit': 'keV'})
beamlet_energy.text = '100'
beamlet_species = etree.SubElement(body_tag, 'beamlet_species')
beamlet_species.text = 'H'  # Li
beamlet_source = etree.SubElement(body_tag, 'beamlet_source')
beamlet_source.text = 'beamlet/test_impurity.h5'
beamlet_current = etree.SubElement(body_tag, 'beamlet_current', {'unit': 'A'})
beamlet_current.text = '0.001'
beamlet_mass = etree.SubElement(body_tag, 'beamlet_mass', {'unit': 'kg'})
beamlet_mass.text = '1.15258e-026'
beamlet_velocity = etree.SubElement(body_tag, 'beamlet_velocity',
                                    {'unit': 'm/s'})
beamlet_velocity.text = '1291547.1348855693'
beamlet_profiles = etree.SubElement(body_tag, 'beamlet_profiles', {})
beamlet_profiles.text = './beamlet_test.h5'
param = etree.ElementTree(element=xml)

b = Beamlet(param=param, profiles=profiles, components=components)

b.compute_linear_emission_density()
b.compute_linear_density_attenuation()
b.compute_relative_populations()

plt.plot(b.profiles['beamlet grid'], b.profiles['linear_emission_density'])
示例#4
0
    def __init__(self, plasma, beam):

        # TODO - input variable validation

        # build species specifications, starting with electrons
        charges = [-1]
        charges.extend(
            [s.charge for s in plasma.composition if not s.charge == 0])
        nuclear_charges = [0]
        nuclear_charges.extend([
            s.element.atomic_number for s in plasma.composition
            if not s.charge == 0
        ])
        atomic_weights = [0]
        atomic_weights.extend([
            int(s.element.atomic_weight) for s in plasma.composition
            if not s.charge == 0
        ])
        index = ['electron']
        index.extend(
            ['ion{}'.format(i + 1) for i in range(len(atomic_weights) - 1)])
        components = pd.DataFrame(data={
            'q': charges,
            'Z': nuclear_charges,
            'A': atomic_weights
        },
                                  index=index)

        # sample plasma parameters along the beam axis
        beam_axis = np.linspace(0, beam.length, num=500)
        beam_to_world = beam.to_root()

        num_params = 1 + 2 + len(
            plasma.composition
        ) * 2  # *2 since every species has density and temperature
        profiles = np.zeros((num_params, 500))
        type_labels = []
        property_labels = []
        unit_labels = []
        profiles[0, :] = beam_axis
        type_labels.append('beamlet grid')
        property_labels.append('distance')
        unit_labels.append('m')
        profiles[1, :] = _sample_along_beam_axis(
            plasma.electron_distribution.density,
            beam_axis,
            beam_to_world,
            debug=True)
        type_labels.append('electron')
        property_labels.append('density')
        unit_labels.append('m-3')
        profiles[2, :] = _sample_along_beam_axis(
            plasma.electron_distribution.effective_temperature, beam_axis,
            beam_to_world)
        type_labels.append('electron')
        property_labels.append('temperature')
        unit_labels.append('eV')
        for i, species in enumerate(plasma.composition):
            profiles[i * 2 + 3, :] = _sample_along_beam_axis(
                species.distribution.density, beam_axis, beam_to_world)
            type_labels.append('ion{}'.format(i))
            property_labels.append('density')
            unit_labels.append('m-3')
            profiles[i * 2 + 4, :] = _sample_along_beam_axis(
                species.distribution.effective_temperature, beam_axis,
                beam_to_world)
            type_labels.append('ion{}'.format(i))
            property_labels.append('temperature')
            unit_labels.append('eV')

        profiles = np.swapaxes(profiles, 0, 1)
        row_index = [i for i in range(500)]
        column_index = pd.MultiIndex.from_arrays(
            [type_labels, property_labels, unit_labels],
            names=['type', 'property', 'unit'])

        profiles = pd.DataFrame(data=profiles,
                                columns=column_index,
                                index=row_index)

        # construct beam param specification
        xml = etree.Element('xml')
        head = etree.SubElement(xml, 'head')
        id_tag = etree.SubElement(head, 'id')
        id_tag.text = 'beamlet_test'
        body_tag = etree.SubElement(xml, 'body')
        beamlet_energy = etree.SubElement(body_tag, 'beamlet_energy',
                                          {'unit': 'keV'})
        beamlet_energy.text = str(int(beam.energy / 1000))
        beamlet_species = etree.SubElement(body_tag, 'beamlet_species')
        beamlet_species.text = beam.element.symbol
        beamlet_source = etree.SubElement(body_tag, 'beamlet_source')
        beamlet_source.text = 'beamlet/test_impurity.h5'
        beamlet_current = etree.SubElement(body_tag, 'beamlet_current',
                                           {'unit': 'A'})
        beamlet_current.text = '0.001'
        beamlet_mass = etree.SubElement(body_tag, 'beamlet_mass',
                                        {'unit': 'kg'})
        beamlet_mass.text = '1.15258e-026'
        beamlet_velocity = etree.SubElement(body_tag, 'beamlet_velocity',
                                            {'unit': 'm/s'})
        beamlet_velocity.text = '1291547.1348855693'
        beamlet_profiles = etree.SubElement(body_tag, 'beamlet_profiles', {})
        beamlet_profiles.text = './beamlet_test.h5'
        param = etree.ElementTree(element=xml)

        # move this outside
        # from crm_solver.atomic_db import AtomicDB
        # renata_ad = AtomicDB(param=param)

        b = Beamlet(param=param, profiles=profiles, components=components)
        b.compute_linear_density_attenuation()
        b.compute_relative_populations()

        self.renate_beamlet = b
示例#5
0
class BeamletTest(unittest.TestCase):
    EXPECTED_ATTR = [
        'param', 'components', 'profiles', 'coefficient_matrix', 'atomic_db',
        'initial_condition'
    ]
    EXPECTED_INITIAL_CONDITION = [
        4832583106.4753895, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    ]
    EXPECTED_PARAM_ATTR = [
        'beamlet_source', 'beamlet_energy', 'beamlet_species',
        'beamlet_current'
    ]
    EXPECTED_COMPONENTS_KEYS = ['q', 'Z', 'A']
    EXPECTED_COMPONENTS_SPECIES = ['electron', 'ion1', 'ion2']
    EXPECTED_PROFILES_LENGTH = 101
    EXPECTED_PROFILES_KEYS = [('beamlet grid', 'distance', 'm'),
                              ('electron', 'density', 'm-3'),
                              ('electron', 'temperature', 'eV'),
                              ('ion1', 'density', 'm-3'),
                              ('ion1', 'temperature', 'eV'),
                              ('ion2', 'density', 'm-3'),
                              ('ion2', 'temperature', 'eV')]
    EXPECTED_ATTENUATION_KEY = 'linear_density_attenuation'
    INPUT_TRANSITION = ['2s', '2p', '5s', '5p']
    EXPECTED_ELEMENTS_3 = 3

    def setUp(self):
        self.beamlet = Beamlet()

    def tearDown(self):
        del self.beamlet

    def test_attributes(self):
        for attr in self.EXPECTED_ATTR:
            assert hasattr(self.beamlet, attr)

    def test_initial_conditions(self):
        self.assertIsInstance(self.beamlet.initial_condition,
                              list,
                              msg='Initial condition is of wrong type. '
                              'Expected type: list')
        self.assertEqual(
            len(self.beamlet.initial_condition),
            self.beamlet.atomic_db.atomic_ceiling,
            msg='Initial conditions must match number of atomic levels.')
        for element in range(len(self.beamlet.initial_condition)):
            self.assertIsInstance(self.beamlet.initial_condition[element],
                                  float,
                                  msg='Expected type for initial'
                                  ' conditions is float.')
            self.assertEqual(
                self.beamlet.initial_condition[element],
                self.EXPECTED_INITIAL_CONDITION[element],
                msg=
                'Computed Init conditions do not match expected init conditions.'
            )

    def test_param_xml(self):
        self.assertIsInstance(
            self.beamlet.param,
            etree._ElementTree,
            msg='Expected type for param input is xml elementtree.')
        for param_attribute in self.EXPECTED_PARAM_ATTR:
            self.assertIsInstance(self.beamlet.param.getroot().find(
                'body').find(param_attribute).text,
                                  str,
                                  msg='Failed to load or find attribute ' +
                                  param_attribute + ' in xml file.')

    def test_atomic_db(self):
        self.assertIsInstance(
            self.beamlet.atomic_db,
            AtomicDB,
            msg='Expected data type for the Atomic database is AtomicDB.')

    def test_components(self):
        self.assertIsInstance(
            self.beamlet.components,
            pandas.core.frame.DataFrame,
            msg='Expected data type of components is: pandas DataFrame.')
        description = self.beamlet.components.keys()
        species = self.beamlet.components.T.keys()
        self.assertEqual(
            len(description),
            self.EXPECTED_ELEMENTS_3,
            msg='Three keys are expected for species description: q,Z,A.')
        for key in range(len(description)):
            self.assertEqual(description[key],
                             self.EXPECTED_COMPONENTS_KEYS[key],
                             msg='The index: ' + description[key] +
                             ' is a mismatch for ' +
                             self.EXPECTED_COMPONENTS_KEYS[key])
        self.assertEqual(
            len(species),
            len(self.beamlet.atomic_db.ion_impact_loss[0]) + 1,
            msg=
            'The same amount of species description have to be present in components as in profiles.'
        )
        for key in range(len(species)):
            self.assertEqual(species[key],
                             self.EXPECTED_COMPONENTS_SPECIES[key],
                             msg='Mismatch of expected plasma species.')
        for component in species:
            for coordinate in description:
                self.assertIsInstance(
                    self.beamlet.components[coordinate][component],
                    numpy.int64,
                    msg='Type mismatch of pandas components content.')

    def test_profiles(self):
        actual = Beamlet(solver='disregard')
        self.assertIsInstance(
            actual.profiles,
            pandas.core.frame.DataFrame,
            msg='Expected data type of profiles is: pandas DataFrame.')
        self.assertEqual(
            len(actual.profiles),
            self.EXPECTED_PROFILES_LENGTH,
            msg='Expected profile length for test case does not match.')
        self.assertTupleEqual(
            actual.profiles.shape,
            (self.EXPECTED_PROFILES_LENGTH,
             2 * len(self.EXPECTED_COMPONENTS_KEYS) + 1),
            msg='Plasma description lacks necessary'
            ' density and/or temperature profiles for all components.')
        self.assertIsInstance(
            actual.profiles.axes[0],
            pandas.Int64Index,
            msg='Expected data type of X - axis for profiles is Int64Index.')
        self.assertIsInstance(
            actual.profiles.axes[1],
            pandas.MultiIndex,
            msg='Expected data type of Y - axis for profiles is MultiIndex.')
        for key in range(len(actual.profiles.keys())):
            self.assertTupleEqual(
                actual.profiles.keys()[key],
                self.EXPECTED_PROFILES_KEYS[key],
                msg='Profiles key description fails for test case.')

    def test_analytical_solver(self):
        with self.assertRaises(NotImplementedError):
            actual = Beamlet(solver='analytical')

    def test_numerical_solver(self):
        self.assertTupleEqual(
            self.beamlet.profiles.shape,
            (self.EXPECTED_PROFILES_LENGTH,
             2 * len(self.EXPECTED_COMPONENTS_KEYS) + 1 +
             self.beamlet.atomic_db.atomic_ceiling),
            msg=
            'Numerical solver failed to provide expected output into plasma profiles.'
        )
        for key_index in range(2 * len(self.EXPECTED_COMPONENTS_KEYS) + 1,
                               len(self.beamlet.profiles.keys())):
            self.assertEqual(
                self.beamlet.profiles.keys()[key_index][0],
                'level ' + self.beamlet.atomic_db.inv_atomic_dict[
                    key_index - 2 * len(self.EXPECTED_COMPONENTS_KEYS) - 1],
                msg=
                'Pandas keys for labeling electron population evolution on atomic levels fails.'
            )
        for level in range(self.beamlet.atomic_db.atomic_ceiling):
            self.assertIsInstance(self.beamlet.profiles[
                'level ' + self.beamlet.atomic_db.inv_atomic_dict[level]],
                                  pandas.core.series.Series,
                                  msg='Expected data type of beam evolution '
                                  'process are pandas series.')
            self.assertEqual(
                len(self.beamlet.profiles[
                    'level ' + self.beamlet.atomic_db.inv_atomic_dict[level]]),
                self.EXPECTED_PROFILES_LENGTH,
                msg='Beam evolution calculation are expected to return '
                'atomic state evolution on the input grid.')

    def test_not_supported_solver(self):
        with self.assertRaises(Exception):
            actual = Beamlet(solver='not-supported')

    def test_attenuation_calculator(self):
        self.beamlet.compute_linear_density_attenuation()
        self.assertEqual(
            self.beamlet.profiles.keys()[-1][0],
            self.EXPECTED_ATTENUATION_KEY,
            msg='Beam attenuation key mismatch within pandas data frame.')
        self.assertIsInstance(
            self.beamlet.profiles[self.EXPECTED_ATTENUATION_KEY],
            pandas.core.series.Series,
            msg=
            'Beam attenuation output expected to be stored in pandas series.')
        self.assertEqual(
            len(self.beamlet.profiles[self.EXPECTED_ATTENUATION_KEY]),
            self.EXPECTED_PROFILES_LENGTH,
            msg=
            'Beam attenuation calculation is expected to be returned on the input grid.'
        )
        test = self.beamlet.profiles['level 2s']
        for level in range(1, self.beamlet.atomic_db.atomic_ceiling):
            test += self.beamlet.profiles[
                'level ' + self.beamlet.atomic_db.inv_atomic_dict[level]]
        for index in range(self.EXPECTED_PROFILES_LENGTH):
            self.assertEqual(
                test[index],
                self.beamlet.profiles[self.EXPECTED_ATTENUATION_KEY][index],
                msg='Beam attenuation calculation fails for test case.')

    def test_spontaneous_emission_fail(self):
        with self.assertRaises(Exception):
            self.beamlet.profiles[self.EXPECTED_ATTENUATION_KEY].\
                compute_linear_emission_density(to_level=self.INPUT_TRANSITION[1], from_level=self.INPUT_TRANSITION[0])

    def test_not_supported_atomic_level_fail(self):
        with self.assertRaises(Exception):
            self.beamlet.profiles[self.EXPECTED_ATTENUATION_KEY].\
                compute_linear_emission_density(to_level=self.INPUT_TRANSITION[2], from_level=self.INPUT_TRANSITION[3])

    def test_emission_calculator(self):
        self.beamlet.compute_linear_emission_density(
            to_level=self.INPUT_TRANSITION[0],
            from_level=self.INPUT_TRANSITION[1])
        self.assertEqual(
            self.beamlet.profiles.keys()[-1][0],
            self.INPUT_TRANSITION[1] + '-->' + self.INPUT_TRANSITION[0],
            msg=
            'Beam emission calculation key mismatch within pandas data frame.')
        self.assertIsInstance(
            self.beamlet.profiles[self.INPUT_TRANSITION[1] + '-->' +
                                  self.INPUT_TRANSITION[0]],
            pandas.core.series.Series,
            msg='Beam emission output expected to '
            'be stored in pandas series.')
        self.assertEqual(
            len(self.beamlet.profiles[self.INPUT_TRANSITION[1] + '-->' +
                                      self.INPUT_TRANSITION[0]]),
            self.EXPECTED_PROFILES_LENGTH,
            msg='Beam emission calculation is expected to be returned '
            'on the input grid.')
        test = self.beamlet.profiles[
            'level ' + self.
            INPUT_TRANSITION[1]] * self.beamlet.atomic_db.spontaneous_trans[
                self.beamlet.atomic_db.atomic_dict[self.INPUT_TRANSITION[0]],
                self.beamlet.atomic_db.atomic_dict[self.INPUT_TRANSITION[1]]]
        for index in range(len(test)):
            self.assertEqual(
                test[index],
                self.beamlet.profiles[self.INPUT_TRANSITION[1] + '-->' +
                                      self.INPUT_TRANSITION[0]][index],
                msg='Beam emission calculation fails for test case.')

    def test_relative_population_calculator(self):
        self.beamlet.compute_relative_populations(
            reference_level=self.INPUT_TRANSITION[0])
        self.assertTupleEqual(
            self.beamlet.profiles.filter(like='rel.pop').shape,
            (self.EXPECTED_PROFILES_LENGTH,
             self.beamlet.atomic_db.atomic_ceiling),
            msg=
            'Relative populations calculated do not match input level number.')
        for level in range(self.beamlet.atomic_db.atomic_ceiling):
            for index in range(len(self.beamlet.profiles)):
                if self.beamlet.atomic_db.inv_atomic_dict[
                        level] == self.INPUT_TRANSITION[0]:
                    self.assertEqual(
                        self.beamlet.profiles['rel.pop ' +
                                              self.beamlet.atomic_db.
                                              inv_atomic_dict[level]][index],
                        1.0,
                        msg='Values on reference level are expected to be 1.')
                else:
                    self.assertLess(
                        self.beamlet.profiles['rel.pop ' +
                                              self.beamlet.atomic_db.
                                              inv_atomic_dict[level]][index],
                        1.0,
                        msg=
                        'Values on comparative levels are expected to be less than 1.'
                    )

    def test_beamlet_pandas_copy(self):
        actual = self.beamlet.copy(object_copy='full')
        self.assertTupleEqual(
            actual.components.shape,
            self.beamlet.components.shape,
            msg=
            'Actual and copy Beamlet object components are expected to have same shape.'
        )
        logic_components = actual.components == self.beamlet.components
        self.assertTrue(
            logic_components.values.all(),
            msg='Content of actual and reference Beamlet components '
            'objects is required to be equal.')
        self.assertTupleEqual(
            actual.profiles.shape,
            self.beamlet.profiles.shape,
            msg=
            'Actual and copy Beamlet object profiles are expected to have the same shape.'
        )
        logic_profiles = actual.profiles == self.beamlet.profiles
        self.assertTrue(logic_profiles.values.all(),
                        msg='Content of actual and reference Beamlet profiles '
                        'objects is required to be equal.')

    def test_beamlet_pandas_copy_without_results(self):
        actual = self.beamlet.copy(object_copy='without-results')
        self.assertTupleEqual(
            actual.components.shape,
            self.beamlet.components.shape,
            msg=
            'Copy and Actual Beamlet object components are expected to have same shape.'
        )
        logic_components = actual.components == self.beamlet.components
        self.assertTrue(logic_components.values.all(),
                        msg='Content of Copy and Actual Beamlet components '
                        'objects is required to be equal.')
        self.assertEqual(
            actual.profiles.shape[0],
            self.beamlet.profiles.shape[0],
            msg=
            'Copy and Actual of Beamlet profiles are expected to have the same number of elements.'
        )
        self.assertEqual(
            actual.profiles.shape[1],
            self.beamlet.profiles.shape[1] -
            self.beamlet.atomic_db.atomic_ceiling,
            msg=
            'Copy of Actual Beamlet object profiles is expected to have nr of atomic levels: '
            + str(self.beamlet.atomic_db.atomic_ceiling) + ' less columns.')
        self.assertEqual(
            actual.profiles.filter(like='level').shape[1],
            0,
            msg=
            'The copy without results is expected NOT to contain any columns labeled <level>.'
        )