示例#1
0
    def createPseudoImpulseModel(self, supportFootIds, swingFootTask):
        """ Action model for pseudo-impulse models.

        A pseudo-impulse model consists of adding high-penalty cost for the contact velocities.
        :param supportFootIds: Ids of the constrained feet
        :param swingFootTask: swinging foot task
        :return pseudo-impulse differential action model
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        nu = self.actuation.nu
        contactModel = crocoddyl.ContactModelMultiple(self.state, nu)
        for i in supportFootIds:
            supportContactModel = crocoddyl.ContactModel3D(self.state, i, np.array([0., 0., 0.]), nu,
                                                           np.array([0., 50.]))
            contactModel.addContact(self.rmodel.frames[i].name + "_contact", supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, nu)
        for i in supportFootIds:
            cone = crocoddyl.FrictionCone(self.Rsurf, self.mu, 4, False)
            coneResidual = crocoddyl.ResidualModelContactFrictionCone(self.state, i, cone, nu)
            coneActivation = crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(cone.lb, cone.ub))
            frictionCone = crocoddyl.CostModelResidual(self.state, coneActivation, coneResidual)
            costModel.addCost(self.rmodel.frames[i].name + "_frictionCone", frictionCone, 1e1)
        if swingFootTask is not None:
            for i in swingFootTask:
                frameTranslationResidual = crocoddyl.ResidualModelFrameTranslation(self.state, i[0], i[1].translation,
                                                                                   nu)
                frameVelocityResidual = crocoddyl.ResidualModelFrameVelocity(self.state, i[0], pinocchio.Motion.Zero(),
                                                                             pinocchio.LOCAL, nu)
                footTrack = crocoddyl.CostModelResidual(self.state, frameTranslationResidual)
                impulseFootVelCost = crocoddyl.CostModelResidual(self.state, frameVelocityResidual)
                costModel.addCost(self.rmodel.frames[i[0]].name + "_footTrack", footTrack, 1e7)
                costModel.addCost(self.rmodel.frames[i[0]].name + "_impulseVel", impulseFootVelCost, 1e6)

        stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] * (self.rmodel.nv - 6) + [10.] * self.rmodel.nv)
        stateResidual = crocoddyl.ResidualModelState(self.state, self.rmodel.defaultState, nu)
        stateActivation = crocoddyl.ActivationModelWeightedQuad(stateWeights**2)
        ctrlResidual = crocoddyl.ResidualModelControl(self.state, nu)
        stateReg = crocoddyl.CostModelResidual(self.state, stateActivation, stateResidual)
        ctrlReg = crocoddyl.CostModelResidual(self.state, ctrlResidual)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-3)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(self.state, self.actuation, contactModel,
                                                                     costModel, 0., True)
        if self.integrator == 'euler':
            model = crocoddyl.IntegratedActionModelEuler(dmodel, 0.)
        elif self.integrator == 'rk4':
            model = crocoddyl.IntegratedActionModelRK(dmodel, crocoddyl.RKType.four, 0.)
        elif self.integrator == 'rk3':
            model = crocoddyl.IntegratedActionModelRK(dmodel, crocoddyl.RKType.three, 0.)
        elif self.integrator == 'rk2':
            model = crocoddyl.IntegratedActionModelRK(dmodel, crocoddyl.RKType.two, 0.)
        else:
            model = crocoddyl.IntegratedActionModelEuler(dmodel, 0.)
        return model
示例#2
0
class Contact3DMultipleTest(ContactModelMultipleAbstractTestCase):
    ROBOT_MODEL = pinocchio.buildSampleModelHumanoidRandom()
    ROBOT_STATE = crocoddyl.StateMultibody(ROBOT_MODEL)

    gains = pinocchio.utils.rand(2)
    xref = crocoddyl.FrameTranslation(ROBOT_MODEL.getFrameId('rleg5_joint'), pinocchio.SE3.Random().translation)
    CONTACT = crocoddyl.ContactModel3D(ROBOT_STATE, xref, gains)
示例#3
0
    def createPseudoImpulseModel(self, supportFootIds, swingFootTask):
        """ Action model for pseudo-impulse models.

        A pseudo-impulse model consists of adding high-penalty cost for the contact velocities.
        :param supportFootIds: Ids of the constrained feet
        :param swingFootTask: swinging foot task
        :return pseudo-impulse differential action model
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        contactModel = crocoddyl.ContactModelMultiple(self.state,
                                                      self.actuation.nu)
        for i in supportFootIds:
            xref = crocoddyl.FrameTranslation(i, np.array([0., 0., 0.]))
            supportContactModel = crocoddyl.ContactModel3D(
                self.state, xref, self.actuation.nu, np.array([0., 50.]))
            contactModel.addContact(self.rmodel.frames[i].name + "_contact",
                                    supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, self.actuation.nu)
        for i in supportFootIds:
            cone = crocoddyl.FrictionCone(self.nsurf, self.mu, 4, False)
            frictionCone = crocoddyl.CostModelContactFrictionCone(
                self.state,
                crocoddyl.ActivationModelQuadraticBarrier(
                    crocoddyl.ActivationBounds(cone.lb, cone.ub)),
                crocoddyl.FrameFrictionCone(i, cone), self.actuation.nu)
            costModel.addCost(self.rmodel.frames[i].name + "_frictionCone",
                              frictionCone, 1e1)
        if swingFootTask is not None:
            for i in swingFootTask:
                xref = crocoddyl.FrameTranslation(i.frame, i.oMf.translation)
                vref = crocoddyl.FrameMotion(i.frame, pinocchio.Motion.Zero())
                footTrack = crocoddyl.CostModelFrameTranslation(
                    self.state, xref, self.actuation.nu)
                impulseFootVelCost = crocoddyl.CostModelFrameVelocity(
                    self.state, vref, self.actuation.nu)
                costModel.addCost(
                    self.rmodel.frames[i.frame].name + "_footTrack", footTrack,
                    1e7)
                costModel.addCost(
                    self.rmodel.frames[i.frame].name + "_impulseVel",
                    impulseFootVelCost, 1e6)
        stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] *
                                (self.rmodel.nv - 6) + [10.] * self.rmodel.nv)
        stateReg = crocoddyl.CostModelState(
            self.state, crocoddyl.ActivationModelWeightedQuad(stateWeights**2),
            self.rmodel.defaultState, self.actuation.nu)
        ctrlReg = crocoddyl.CostModelControl(self.state, self.actuation.nu)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-3)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(
            self.state, self.actuation, contactModel, costModel, 0., True)
        model = crocoddyl.IntegratedActionModelEuler(dmodel, 0.)
        return model
示例#4
0
class Contact3DTest(ContactModelAbstractTestCase):
    ROBOT_MODEL = example_robot_data.loadHyQ().model
    ROBOT_STATE = crocoddyl.StateMultibody(ROBOT_MODEL)

    gains = pinocchio.utils.rand(2)
    xref = crocoddyl.FrameTranslation(ROBOT_MODEL.getFrameId('lf_foot'),
                                      pinocchio.SE3.Random().translation)
    CONTACT = crocoddyl.ContactModel3D(ROBOT_STATE, xref, gains)
    CONTACT_DER = Contact3DDerived(ROBOT_STATE, xref, gains)
示例#5
0
    def createSwingFootModel(self, timeStep, supportFootIds, comTask=None, swingFootTask=None):
        """ Action model for a swing foot phase.

        :param timeStep: step duration of the action model
        :param supportFootIds: Ids of the constrained feet
        :param comTask: CoM task
        :param swingFootTask: swinging foot task
        :return action model for a swing foot phase
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        contactModel = crocoddyl.ContactModelMultiple(self.state, self.actuation.nu)
        for i in supportFootIds:
            xref = crocoddyl.FrameTranslation(i, np.matrix([0., 0., 0.]).T)
            supportContactModel = crocoddyl.ContactModel3D(self.state, xref, self.actuation.nu, np.matrix([0., 50.]).T)
            contactModel.addContact(self.rmodel.frames[i].name + "_contact", supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, self.actuation.nu)
        if isinstance(comTask, np.ndarray):
            comTrack = crocoddyl.CostModelCoMPosition(self.state, comTask, self.actuation.nu)
            costModel.addCost("comTrack", comTrack, 1e6)
        for i in supportFootIds:
            cone = crocoddyl.FrictionCone(self.nsurf, self.mu, 4, False)
            frictionCone = crocoddyl.CostModelContactFrictionCone(
                self.state, crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(cone.lb, cone.ub)),
                cone, i, self.actuation.nu)
            costModel.addCost(self.rmodel.frames[i].name + "_frictionCone", frictionCone, 1e1)
        if swingFootTask is not None:
            for i in swingFootTask:
                xref = crocoddyl.FrameTranslation(i.frame, i.oMf.translation)
                footTrack = crocoddyl.CostModelFrameTranslation(self.state, xref, self.actuation.nu)
                costModel.addCost(self.rmodel.frames[i.frame].name + "_footTrack", footTrack, 1e6)

        stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] * (self.rmodel.nv - 6) + [10.] * 6 + [1.] *
                                (self.rmodel.nv - 6))
        stateReg = crocoddyl.CostModelState(self.state,
                                            crocoddyl.ActivationModelWeightedQuad(np.matrix(stateWeights**2).T),
                                            self.rmodel.defaultState, self.actuation.nu)
        ctrlReg = crocoddyl.CostModelControl(self.state, self.actuation.nu)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-1)

        lb = self.state.diff(0 * self.state.lb, self.state.lb)
        ub = self.state.diff(0 * self.state.ub, self.state.ub)
        stateBounds = crocoddyl.CostModelState(
            self.state, crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(lb, ub)),
            0 * self.rmodel.defaultState, self.actuation.nu)
        costModel.addCost("stateBounds", stateBounds, 1e3)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(self.state, self.actuation, contactModel,
                                                                     costModel, 0., True)
        model = crocoddyl.IntegratedActionModelEuler(dmodel, timeStep)
        return model
示例#6
0
    def createSwingFootModel(self,
                             timeStep,
                             supportFootIds,
                             comTask=None,
                             swingFootTask=None):
        """ Action model for a swing foot phase.

        :param timeStep: step duration of the action model
        :param supportFootIds: Ids of the constrained feet
        :param comTask: CoM task
        :param swingFootTask: swinging foot task
        :return action model for a swing foot phase
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        contactModel = crocoddyl.ContactModelMultiple(self.state,
                                                      self.actuation.nu)
        for i in supportFootIds:
            xref = crocoddyl.FrameTranslation(i, np.matrix([0., 0., 0.]).T)
            supportContactModel = crocoddyl.ContactModel3D(
                self.state, xref, self.actuation.nu,
                np.matrix([0., 0.]).T)
            contactModel.addContact('contact_' + str(i), supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, self.actuation.nu)
        if isinstance(comTask, np.ndarray):
            comTrack = crocoddyl.CostModelCoMPosition(self.state, comTask,
                                                      self.actuation.nu)
            costModel.addCost("comTrack", comTrack, 1e4)
        if swingFootTask is not None:
            for i in swingFootTask:
                xref = crocoddyl.FrameTranslation(i.frame, i.oMf.translation)
                footTrack = crocoddyl.CostModelFrameTranslation(
                    self.state, xref, self.actuation.nu)
                costModel.addCost("footTrack_" + str(i), footTrack, 1e4)

        stateWeights = np.array([0] * 3 + [500.] * 3 + [0.01] *
                                (self.rmodel.nv - 6) + [10] * self.rmodel.nv)
        stateReg = crocoddyl.CostModelState(
            self.state,
            crocoddyl.ActivationModelWeightedQuad(
                np.matrix(stateWeights**2).T), self.rmodel.defaultState,
            self.actuation.nu)
        ctrlReg = crocoddyl.CostModelControl(self.state, self.actuation.nu)
        costModel.addCost("stateReg", stateReg, 1e-1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-4)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(
            self.state, self.actuation, contactModel, costModel)
        model = crocoddyl.IntegratedActionModelEuler(dmodel, timeStep)
        return model
示例#7
0
class Contact3DMultipleTest(ContactModelMultipleAbstractTestCase):
    ROBOT_MODEL = example_robot_data.loadHyQ().model
    ROBOT_STATE = crocoddyl.StateMultibody(ROBOT_MODEL)

    gains = pinocchio.utils.rand(2)
    CONTACTS = collections.OrderedDict(
        sorted({
            'lf_foot':
            crocoddyl.ContactModel3D(
                ROBOT_STATE,
                crocoddyl.FrameTranslation(ROBOT_MODEL.getFrameId('lf_foot'),
                                           pinocchio.SE3.Random().translation),
                gains),
            'rh_foot':
            crocoddyl.ContactModel3D(
                ROBOT_STATE,
                crocoddyl.FrameTranslation(ROBOT_MODEL.getFrameId('rh_foot'),
                                           pinocchio.SE3.Random().translation),
                gains)
        }.items()))
示例#8
0
    def createFootSwitchModel(self, supportFootIds, swingFootTask):
        """ Action model for a foot switch phase.

        :param supportFootIds: Ids of the constrained feet
        :param swingFootTask: swinging foot task
        :return action model for a foot switch phase
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        contactModel = crocoddyl.ContactModelMultiple(self.state,
                                                      self.actuation.nu)
        for i in supportFootIds:
            xref = crocoddyl.FrameTranslation(i, np.matrix([0., 0., 0.]).T)
            supportContactModel = crocoddyl.ContactModel3D(
                self.state, xref, self.actuation.nu,
                np.matrix([0., 0.]).T)
            contactModel.addContact('contact_' + str(i), supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, self.actuation.nu)
        if swingFootTask is not None:
            for i in swingFootTask:
                xref = crocoddyl.FrameTranslation(i.frame, i.oMf.translation)
                footTrack = crocoddyl.CostModelFrameTranslation(
                    self.state, xref, self.actuation.nu)
                costModel.addCost("footTrack_" + str(i), footTrack, 1e7)
        stateWeights = np.array([0] * 3 + [500.] * 3 + [0.01] *
                                (self.rmodel.nv - 6) + [10] * self.rmodel.nv)
        stateReg = crocoddyl.CostModelState(
            self.state,
            crocoddyl.ActivationModelWeightedQuad(
                np.matrix(stateWeights**2).T), self.rmodel.defaultState,
            self.actuation.nu)
        ctrlReg = crocoddyl.CostModelControl(self.state, self.actuation.nu)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-3)

        for i in swingFootTask:
            vref = crocoddyl.FrameMotion(i.frame, pinocchio.Motion.Zero())
            impactFootVelCost = crocoddyl.CostModelFrameVelocity(
                self.state, vref, self.actuation.nu)
            costModel.addCost('impactVel_' + str(i.frame), impactFootVelCost,
                              1e6)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(
            self.state, self.actuation, contactModel, costModel)
        model = crocoddyl.IntegratedActionModelEuler(dmodel, 0.)
        return model
示例#9
0
from test_utils import NUMDIFF_MODIFIER, assertNumDiff

# Create robot model and data
ROBOT_MODEL = example_robot_data.loadICub().model
ROBOT_DATA = ROBOT_MODEL.createData()
ROBOT_STATE = crocoddyl.StateMultibody(ROBOT_MODEL)

# Contact force cost
# Create differential action model and data; link the contact data
ACTUATION = crocoddyl.ActuationModelFloatingBase(ROBOT_STATE)
CONTACTS = crocoddyl.ContactModelMultiple(ROBOT_STATE, ACTUATION.nu)
CONTACT_6D_1 = crocoddyl.ContactModel6D(
    ROBOT_STATE, crocoddyl.FramePlacement(ROBOT_MODEL.getFrameId('r_sole'), pinocchio.SE3.Random()), ACTUATION.nu,
    pinocchio.utils.rand(2))
CONTACT_3D_2 = crocoddyl.ContactModel3D(
    ROBOT_STATE, crocoddyl.FrameTranslation(ROBOT_MODEL.getFrameId('l_sole'),
                                            pinocchio.SE3.Random().translation), ACTUATION.nu, pinocchio.utils.rand(2))
CONTACTS.addContact("r_sole_contact", CONTACT_6D_1)
CONTACTS.addContact("l_sole_contact", CONTACT_3D_2)
COSTS = crocoddyl.CostModelSum(ROBOT_STATE, ACTUATION.nu)
COSTS.addCost(
    "force_6d",
    crocoddyl.CostModelContactForce(ROBOT_STATE,
                                    crocoddyl.FrameForce(ROBOT_MODEL.getFrameId('r_sole'), pinocchio.Force.Random()),
                                    6, ACTUATION.nu), 1.)
COSTS.addCost(
    "force_3d",
    crocoddyl.CostModelContactForce(ROBOT_STATE,
                                    crocoddyl.FrameForce(ROBOT_MODEL.getFrameId('l_sole'), pinocchio.Force.Random()),
                                    3, ACTUATION.nu), 1.)
MODEL = crocoddyl.DifferentialActionModelContactFwdDynamics(ROBOT_STATE, ACTUATION, CONTACTS, COSTS, 0., True)
示例#10
0
    def createSwingFootModel(self, timeStep, supportFootIds, comTask=None, swingFootTask=None):
        """ Action model for a swing foot phase.

        :param timeStep: step duration of the action model
        :param supportFootIds: Ids of the constrained feet
        :param comTask: CoM task
        :param swingFootTask: swinging foot task
        :return action model for a swing foot phase
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        nu = self.actuation.nu
        contactModel = crocoddyl.ContactModelMultiple(self.state, nu)
        for i in supportFootIds:
            supportContactModel = crocoddyl.ContactModel3D(self.state, i, np.array([0., 0., 0.]), nu,
                                                           np.array([0., 50.]))
            contactModel.addContact(self.rmodel.frames[i].name + "_contact", supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, nu)
        if isinstance(comTask, np.ndarray):
            comResidual = crocoddyl.ResidualModelCoMPosition(self.state, comTask, nu)
            comTrack = crocoddyl.CostModelResidual(self.state, comResidual)
            costModel.addCost("comTrack", comTrack, 1e6)
        for i in supportFootIds:
            cone = crocoddyl.FrictionCone(self.Rsurf, self.mu, 4, False)
            coneResidual = crocoddyl.ResidualModelContactFrictionCone(self.state, i, cone, nu)
            coneActivation = crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(cone.lb, cone.ub))
            frictionCone = crocoddyl.CostModelResidual(self.state, coneActivation, coneResidual)
            costModel.addCost(self.rmodel.frames[i].name + "_frictionCone", frictionCone, 1e1)
        if swingFootTask is not None:
            for i in swingFootTask:
                frameTranslationResidual = crocoddyl.ResidualModelFrameTranslation(self.state, i[0], i[1].translation,
                                                                                   nu)
                footTrack = crocoddyl.CostModelResidual(self.state, frameTranslationResidual)
                costModel.addCost(self.rmodel.frames[i[0]].name + "_footTrack", footTrack, 1e6)

        stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] * (self.rmodel.nv - 6) + [10.] * 6 + [1.] *
                                (self.rmodel.nv - 6))
        stateResidual = crocoddyl.ResidualModelState(self.state, self.rmodel.defaultState, nu)
        stateActivation = crocoddyl.ActivationModelWeightedQuad(stateWeights**2)
        ctrlResidual = crocoddyl.ResidualModelControl(self.state, nu)
        stateReg = crocoddyl.CostModelResidual(self.state, stateActivation, stateResidual)
        ctrlReg = crocoddyl.CostModelResidual(self.state, ctrlResidual)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-1)

        lb = np.concatenate([self.state.lb[1:self.state.nv + 1], self.state.lb[-self.state.nv:]])
        ub = np.concatenate([self.state.ub[1:self.state.nv + 1], self.state.ub[-self.state.nv:]])
        stateBoundsResidual = crocoddyl.ResidualModelState(self.state, nu)
        stateBoundsActivation = crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(lb, ub))
        stateBounds = crocoddyl.CostModelResidual(self.state, stateBoundsActivation, stateBoundsResidual)
        costModel.addCost("stateBounds", stateBounds, 1e3)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(self.state, self.actuation, contactModel,
                                                                     costModel, 0., True)
        if self.integrator == 'euler':
            model = crocoddyl.IntegratedActionModelEuler(dmodel, self.control, timeStep)
        elif self.integrator == 'rk4':
            model = crocoddyl.IntegratedActionModelRK(dmodel, self.control, crocoddyl.RKType.four, timeStep)
        elif self.integrator == 'rk3':
            model = crocoddyl.IntegratedActionModelRK(dmodel, self.control, crocoddyl.RKType.three, timeStep)
        elif self.integrator == 'rk2':
            model = crocoddyl.IntegratedActionModelRK(dmodel, self.control, crocoddyl.RKType.two, timeStep)
        else:
            model = crocoddyl.IntegratedActionModelEuler(dmodel, self.control, timeStep)
        return model