def make_policy(epochs, params, lr, momentum, wd): optimizer = SGD(params, lr, momentum=momentum, weight_decay=wd) # this creates a scheduler which is used to adjust the learning rate, many of the scheduler are defined , choose one as per your need # check if the policy is right scheduler = PolyPolicy(optimizer, epochs, 1) return optimizer, scheduler
def make_policy(epochs, network, lr, momentum): optimizer = Adam([ {'params': network.parameters(), 'lr': lr}, ], weight_decay=1e-4) # this creates a scheduler which is used to adjust the learning rate, many of the scheduler are defined , choose one as per your need # check if the policy is right scheduler = PolyPolicy(optimizer, epochs, 1) return optimizer, scheduler
def make_policy(epochs, network, lr, momentum, wd): optimizer = SGD([ { 'params': network.parameters(), 'lr': lr }, ], momentum=momentum, weight_decay=wd) scheduler = PolyPolicy(optimizer, epochs, 1) return optimizer, scheduler
def make_policy(epochs, network, lr, momentum, wd): optimizer = SGD(filter(lambda p: p.requires_grad, network.parameters()), lr = lr, momentum=momentum, weight_decay=wd) scheduler = PolyPolicy(optimizer, epochs, 1) return optimizer, scheduler