def testImportKey12(self): """Verify import of RSAPublicKey DER SEQUENCE, encoded with PEM""" der = asn1.DerSequence([17, 3]).encode() pem = der2pem(der) key = RSA.importKey(pem) self.assertEqual(key.n, 17) self.assertEqual(key.e, 3)
def decrypt_store_message(self, encrypted_message): key = self.private_key if not key.startswith("-----BEGIN RSA PRIVATE KEY-----"): key = "-----BEGIN RSA PRIVATE KEY-----\n" + key + "\n-----END RSA PRIVATE KEY-----" key = RSA.importKey(key) entc_list = [] i = 0 for x in (key.size_in_bytes(), 16, 16, -1): if i == 3: entc_list.append(message) else: entc_list.append(message[:x]) i += 1 message = message[x:] enc_session_key, nonce, tag, ciphertext = entc_list # Decrypt the session key with the private RSA key cipher_rsa = PKCS1_OAEP.new(key) session_key = cipher_rsa.decrypt(enc_session_key) # Decrypt the data with the AES session key cipher_aes = AES.new(session_key, AES.MODE_EAX, nonce) encoded_message = cipher_aes.decrypt_and_verify(ciphertext, tag) decoded_message = encoded_message.decode("utf-8") # add to log and return self.log_messages.append(decoded_message) return decoded_message
def test_import_key_windows_cr_lf(self): pem_cr_lf = "\r\n".join(self.rsaKeyPEM.splitlines()) key = RSA.importKey(pem_cr_lf) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q)
def decrypt(self, ciphertext, keyfile=os.path.expanduser('KEY_FILES/SimulatorNew.pem')): input = open(keyfile) key = RSA.importKey(input.read()) input.close() cipher = PKCS1_v1_5.new(key) plaintext = cipher.decrypt(ciphertext, None) return plaintext
def testVerify1(self): for test in self._testData: # Build the key key = RSA.importKey(test[0]) # The real test cipher = PKCS.new(key) pt = cipher.decrypt(t2b(test[2]), "---") self.assertEqual(pt, b(test[1]))
def testImportKey1(self): """Verify import of RSAPrivateKey DER SEQUENCE""" key = RSA.importKey(self.rsaKeyDER) self.assertTrue(key.has_private()) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q)
def testImportKey3bytes(self): """Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as byte string""" key = RSA.importKey(b(self.rsaKeyPEM)) self.assertEqual(key.has_private(), True) # assert_ self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q)
def testImportKey10(self): """Verify import of unencrypted PrivateKeyInfo DER SEQUENCE, encoded with PEM""" key = RSA.importKey(self.rsaKeyPEM8) self.assertTrue(key.has_private()) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q)
def testImportKey8(self): """Verify import of encrypted PrivateKeyInfo DER SEQUENCE""" for t in self.rsaKeyEncryptedPEM: key = RSA.importKey(t[1], t[0]) self.assertTrue(key.has_private()) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q)
def main(): """主函数""" # 生成密钥对 key_pair = RSA.generate(1024) # 导入公钥 pub_key = RSA.importKey(key_pair.publickey().exportKey()) # 导入私钥 pri_key = RSA.importKey(key_pair.exportKey()) message1 = 'hello, world!' # 加密数据 data = pub_key.encrypt(message1.encode(), None) # 对加密数据进行BASE64编码 message2 = base64.b64encode(data[0]) print(message2) # 对加密数据进行BASE64解码 data = base64.b64decode(message2) # 解密数据 message3 = pri_key.decrypt(data) print(message3.decode())
def testExportKey14(self): # Export and re-import the encrypted key. It must match. # DER envelope, PKCS#8, PKCS#8 encryption key = RSA.construct( [self.n, self.e, self.d, self.p, self.q, self.pInv]) outkey = key.export_key('DER', 'test', pkcs=8) inkey = RSA.importKey(outkey, 'test') self.assertEqual(key.n, inkey.n) self.assertEqual(key.e, inkey.e) self.assertEqual(key.d, inkey.d)
def runTest(self): key = RSA.importKey(PKCS1_15_NoParams.rsakey) hashed = SHA1.new(b("Test")) good_signature = PKCS1_v1_5.new(key).sign(hashed) verifier = PKCS1_v1_5.new(key.publickey()) self.assertEqual(verifier.verify(hashed, good_signature), True) # Flip a few bits in the signature bad_signature = strxor(good_signature, bchr(1) * len(good_signature)) self.assertEqual(verifier.verify(hashed, bad_signature), False)
def testExportKey12(self): # Export and re-import the encrypted key. It must match. # PEM envelope, PKCS#8, old PEM encryption key = RSA.construct( [self.n, self.e, self.d, self.p, self.q, self.pInv]) outkey = key.export_key('PEM', 'test', pkcs=8) self.assertTrue(tostr(outkey).find('4,ENCRYPTED') != -1) self.assertTrue(tostr(outkey).find('BEGIN PRIVATE KEY') != -1) inkey = RSA.importKey(outkey, 'test') self.assertEqual(key.n, inkey.n) self.assertEqual(key.e, inkey.e) self.assertEqual(key.d, inkey.d)
def test_x509v3(self): # Sample V3 certificate with a 1024 bit RSA key x509_v3_cert = """ -----BEGIN CERTIFICATE----- MIIEcjCCAlqgAwIBAgIBATANBgkqhkiG9w0BAQsFADBhMQswCQYDVQQGEwJVUzEL MAkGA1UECAwCTUQxEjAQBgNVBAcMCUJhbHRpbW9yZTEQMA4GA1UEAwwHVGVzdCBD QTEfMB0GCSqGSIb3DQEJARYQdGVzdEBleGFtcGxlLmNvbTAeFw0xNDA3MTIwOTM1 MTJaFw0xNzA0MDcwOTM1MTJaMEQxCzAJBgNVBAYTAlVTMQswCQYDVQQIDAJNRDES MBAGA1UEBwwJQmFsdGltb3JlMRQwEgYDVQQDDAtUZXN0IFNlcnZlcjCBnzANBgkq hkiG9w0BAQEFAAOBjQAwgYkCgYEA/S7GJV2OcFdyNMQ4K75KrYFtMEn3VnEFdPHa jyS37XlMxSh0oS4GeTGVUCJInl5Cpsv8WQdh03FfeOdvzp5IZ46OcjeOPiWnmjgl 2G5j7e2bDH7RSchGV+OD6Fb1Agvuu2/9iy8fdf3rPQ/7eAddzKUrzwacVbnW+tg2 QtSXKRcCAwEAAaOB1TCB0jAdBgNVHQ4EFgQU/WwCX7FfWMIPDFfJ+I8a2COG+l8w HwYDVR0jBBgwFoAUa0hkif3RMaraiWtsOOZZlLu9wJwwCQYDVR0TBAIwADALBgNV HQ8EBAMCBeAwSgYDVR0RBEMwQYILZXhhbXBsZS5jb22CD3d3dy5leGFtcGxlLmNv bYIQbWFpbC5leGFtcGxlLmNvbYIPZnRwLmV4YW1wbGUuY29tMCwGCWCGSAGG+EIB DQQfFh1PcGVuU1NMIEdlbmVyYXRlZCBDZXJ0aWZpY2F0ZTANBgkqhkiG9w0BAQsF AAOCAgEAvO6xfdsGbnoK4My3eJthodTAjMjPwFVY133LH04QLcCv54TxKhtUg1fi PgdjVe1HpTytPBfXy2bSZbXAN0abZCtw1rYrnn7o1g2pN8iypVq3zVn0iMTzQzxs zEPO3bpR/UhNSf90PmCsS5rqZpAAnXSaAy1ClwHWk/0eG2pYkhE1m1ABVMN2lsAW e9WxGk6IFqaI9O37NYQwmEypMs4DC+ECJEvbPFiqi3n0gbXCZJJ6omDA5xJldaYK Oa7KR3s/qjBsu9UAiWpLBuFoSTHIF2aeRKRFmUdmzwo43eVPep65pY6eQ4AdL2RF rqEuINbGlzI5oQyYhu71IwB+iPZXaZZPlwjLgOsuad/p2hOgDb5WxUi8FnDPursQ ujfpIpmrOP/zpvvQWnwePI3lI+5n41kTBSbefXEdv6rXpHk3QRzB90uPxnXPdxSC 16ASA8bQT5an/1AgoE3k9CrcD2K0EmgaX0YI0HUhkyzbkg34EhpWJ6vvRUbRiNRo 9cIbt/ya9Y9u0Ja8GLXv6dwX0l0IdJMkL8KifXUFAVCujp1FBrr/gdmwQn8itANy +qbnWSxmOvtaY0zcaFAcONuHva0h51/WqXOMO1eb8PhR4HIIYU8p1oBwQp7dSni8 THDi1F+GG5PsymMDj5cWK42f+QzjVw5PrVmFqqrrEoMlx8DWh5Y= -----END CERTIFICATE----- """.strip() # RSA public key as dumped by openssl exponent = 65537 modulus_str = """ 00:fd:2e:c6:25:5d:8e:70:57:72:34:c4:38:2b:be: 4a:ad:81:6d:30:49:f7:56:71:05:74:f1:da:8f:24: b7:ed:79:4c:c5:28:74:a1:2e:06:79:31:95:50:22: 48:9e:5e:42:a6:cb:fc:59:07:61:d3:71:5f:78:e7: 6f:ce:9e:48:67:8e:8e:72:37:8e:3e:25:a7:9a:38: 25:d8:6e:63:ed:ed:9b:0c:7e:d1:49:c8:46:57:e3: 83:e8:56:f5:02:0b:ee:bb:6f:fd:8b:2f:1f:75:fd: eb:3d:0f:fb:78:07:5d:cc:a5:2b:cf:06:9c:55:b9: d6:fa:d8:36:42:d4:97:29:17 """ modulus = int(re.sub("[^0-9a-f]", "", modulus_str), 16) key = RSA.importKey(x509_v3_cert) self.assertEqual(key.e, exponent) self.assertEqual(key.n, modulus) self.assertFalse(key.has_private())
def testExportKey13(self): # Export and re-import the encrypted key. It must match. # PEM envelope, PKCS#8, PKCS#8 encryption key = RSA.construct( [self.n, self.e, self.d, self.p, self.q, self.pInv]) outkey = key.export_key( 'PEM', 'test', pkcs=8, protection='PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC') self.assertTrue(tostr(outkey).find('4,ENCRYPTED') == -1) self.assertTrue( tostr(outkey).find('BEGIN ENCRYPTED PRIVATE KEY') != -1) inkey = RSA.importKey(outkey, 'test') self.assertEqual(key.n, inkey.n) self.assertEqual(key.e, inkey.e) self.assertEqual(key.d, inkey.d)
def encrypt_message(self, plaintext, public_key): if not public_key.startswith("-----BEGIN RSA PUBLIC KEY-----"): public_key = "-----BEGIN RSA PUBLIC KEY-----\n" + public_key + "\n-----END RSA PUBLIC KEY-----" recipient_key = RSA.importKey(public_key) session_key = get_random_bytes(16) # Encrypt the session key with the public RSA key cipher_rsa = PKCS1_OAEP.new(recipient_key) enc_session_key = cipher_rsa.encrypt(session_key) # Encrypt the data with the AES session key cipher_aes = AES.new(session_key, AES.MODE_EAX) ciphertext, tag = cipher_aes.encrypt_and_digest( plaintext.encode("UTF-8")) encrypted_message = b"".join( [x for x in (enc_session_key, cipher_aes.nonce, tag, ciphertext)]) return encrypted_message
def testEncrypt1(self): for test in self._testData: # Build the key key = RSA.importKey(test[0]) # RNG that takes its random numbers from a pool given # at initialization class randGen: def __init__(self, data): self.data = data self.idx = 0 def __call__(self, N): r = self.data[self.idx:self.idx + N] self.idx += N return r # The real test cipher = PKCS.new(key, randfunc=randGen(t2b(test[3]))) ct = cipher.encrypt(b(test[1])) self.assertEqual(ct, t2b(test[2]))
def test_x509v1(self): # Sample V1 certificate with a 1024 bit RSA key x509_v1_cert = """ -----BEGIN CERTIFICATE----- MIICOjCCAaMCAQEwDQYJKoZIhvcNAQEEBQAwfjENMAsGA1UEChMEQWNtZTELMAkG A1UECxMCUkQxHDAaBgkqhkiG9w0BCQEWDXNwYW1AYWNtZS5vcmcxEzARBgNVBAcT Ck1ldHJvcG9saXMxETAPBgNVBAgTCE5ldyBZb3JrMQswCQYDVQQGEwJVUzENMAsG A1UEAxMEdGVzdDAeFw0xNDA3MTExOTU3MjRaFw0xNzA0MDYxOTU3MjRaME0xCzAJ BgNVBAYTAlVTMREwDwYDVQQIEwhOZXcgWW9yazENMAsGA1UEChMEQWNtZTELMAkG A1UECxMCUkQxDzANBgNVBAMTBmxhdHZpYTCBnzANBgkqhkiG9w0BAQEFAAOBjQAw gYkCgYEAyG+kytdRj3TFbRmHDYp3TXugVQ81chew0qeOxZWOz80IjtWpgdOaCvKW NCuc8wUR9BWrEQW+39SaRMLiQfQtyFSQZijc3nsEBu/Lo4uWZ0W/FHDRVSvkJA/V Ex5NL5ikI+wbUeCV5KajGNDalZ8F1pk32+CBs8h1xNx5DyxuEHUCAwEAATANBgkq hkiG9w0BAQQFAAOBgQCVQF9Y//Q4Psy+umEM38pIlbZ2hxC5xNz/MbVPwuCkNcGn KYNpQJP+JyVTsPpO8RLZsAQDzRueMI3S7fbbwTzAflN0z19wvblvu93xkaBytVok 9VBAH28olVhy9b1MMeg2WOt5sUEQaFNPnwwsyiY9+HsRpvpRnPSQF+kyYVsshQ== -----END CERTIFICATE----- """.strip() # RSA public key as dumped by openssl exponent = 65537 modulus_str = """ 00:c8:6f:a4:ca:d7:51:8f:74:c5:6d:19:87:0d:8a: 77:4d:7b:a0:55:0f:35:72:17:b0:d2:a7:8e:c5:95: 8e:cf:cd:08:8e:d5:a9:81:d3:9a:0a:f2:96:34:2b: 9c:f3:05:11:f4:15:ab:11:05:be:df:d4:9a:44:c2: e2:41:f4:2d:c8:54:90:66:28:dc:de:7b:04:06:ef: cb:a3:8b:96:67:45:bf:14:70:d1:55:2b:e4:24:0f: d5:13:1e:4d:2f:98:a4:23:ec:1b:51:e0:95:e4:a6: a3:18:d0:da:95:9f:05:d6:99:37:db:e0:81:b3:c8: 75:c4:dc:79:0f:2c:6e:10:75 """ modulus = int(re.sub("[^0-9a-f]", "", modulus_str), 16) key = RSA.importKey(x509_v1_cert) self.assertEqual(key.e, exponent) self.assertEqual(key.n, modulus) self.assertFalse(key.has_private())
def runTest(self): verifier = pkcs1_15.new(RSA.importKey(self.rsakey)) hashed = SHA1.new(self.msg) verifier.verify(hashed, self.signature)
def testImportKey2(self): """Verify import of SubjectPublicKeyInfo DER SEQUENCE""" key = RSA.importKey(self.rsaPublicKeyDER) self.assertFalse(key.has_private()) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e)
import crypto import sys sys.modules['Crypto'] = crypto from crypto.PublicKey import RSA from crypto.Hash import SHA signature = int(open('sig', 'rb').read().hex(), 16) print(signature) pubkey = RSA.importKey(open('key.pub').read()) from Crypto.PublicKey import RSA print("{:0128x}".format(pow(signature, pubkey.e, pubkey.n))) print(SHA.new(b"CSE 127 rul3z!").hexdigest())
def testImportKey4unicode(self): """Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as unicode""" key = RSA.importKey(self.rsaPublicKeyPEM) self.assertEqual(key.has_private(), False) # failIf self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e)
def testImportKey7(self): """Verify import of OpenSSH public key""" key = RSA.importKey(self.rsaPublicKeyOpenSSH) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e)
def testImportKey4bytes(self): """Verify import of SubjectPublicKeyInfo DER SEQUENCE, encoded with PEM as byte string""" key = RSA.importKey(b(self.rsaPublicKeyPEM)) self.assertEqual(key.has_private(), False) # failIf self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e)
def testImportKey6(self): """Verifies that the imported key is still a valid RSA pair""" key = RSA.importKey(self.rsaKeyDER) idem = key._encrypt(key._decrypt(65)) self.assertEqual(idem, 65)
import math import time def roundup(x): return int(math.ceil(x / 10.0)) * 10 cid = sys.argv[1] SERVER = sys.argv[2] PORT = sys.argv[3] BYZANTINE = sys.argv[4] key = False with open("keys.pem", "r") as myfile: key = RSA.importKey(myfile.read()) public_key = key.publickey() verifier = PKCS1_v1_5.new(public_key) client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) intro = "REGISTER_REQUEST " + str(cid) intro = intro.encode() client.sendto(intro, (SERVER, int(PORT))) response, address = client.recvfrom(1024) neighbors = pickle.loads(response) print(neighbors)
def testImportKey11(self): """Verify import of RSAPublicKey DER SEQUENCE""" der = asn1.DerSequence([17, 3]).encode() key = RSA.importKey(der) self.assertEqual(key.n, 17) self.assertEqual(key.e, 3)