def inplace_pow(self, exponent, modulus=None): if modulus is None: if exponent < 0: raise ValueError("Exponent must not be negative") # Normal exponentiation if exponent > 256: raise ValueError("Exponent is too big") _gmp.mpz_pow_ui( self._mpz_p, self._mpz_p, # Base c_ulong(int(exponent))) else: # Modular exponentiation if not isinstance(modulus, Integer): modulus = Integer(modulus) if not modulus: raise ZeroDivisionError("Division by zero") if modulus.is_negative(): raise ValueError("Modulus must be positive") if isinstance(exponent, int): if exponent < 0: raise ValueError("Exponent must not be negative") if exponent < 65536: _gmp.mpz_powm_ui(self._mpz_p, self._mpz_p, c_ulong(exponent), modulus._mpz_p) return self exponent = Integer(exponent) elif exponent.is_negative(): raise ValueError("Exponent must not be negative") _gmp.mpz_powm(self._mpz_p, self._mpz_p, exponent._mpz_p, modulus._mpz_p) return self
def __isub__(self, term): if isinstance(term, int): if 0 <= term < 65536: _gmp.mpz_sub_ui(self._mpz_p, self._mpz_p, c_ulong(term)) return self if -65535 < term < 0: _gmp.mpz_add_ui(self._mpz_p, self._mpz_p, c_ulong(-term)) return self term = Integer(term) _gmp.mpz_sub(self._mpz_p, self._mpz_p, term._mpz_p) return self
def __imul__(self, term): if isinstance(term, int): if 0 <= term < 65536: _gmp.mpz_mul_ui(self._mpz_p, self._mpz_p, c_ulong(term)) return self if -65535 < term < 0: _gmp.mpz_mul_ui(self._mpz_p, self._mpz_p, c_ulong(-term)) _gmp.mpz_neg(self._mpz_p, self._mpz_p) return self term = Integer(term) _gmp.mpz_mul(self._mpz_p, self._mpz_p, term._mpz_p) return self
def multiply_accumulate(self, a, b): """Increment the number by the product of a and b.""" if not isinstance(a, Integer): a = Integer(a) if isinstance(b, int): if 0 < b < 65536: _gmp.mpz_addmul_ui(self._mpz_p, a._mpz_p, c_ulong(b)) return self if -65535 < b < 0: _gmp.mpz_submul_ui(self._mpz_p, a._mpz_p, c_ulong(-b)) return self b = Integer(b) _gmp.mpz_addmul(self._mpz_p, a._mpz_p, b._mpz_p) return self
def seek(self, position): """Seek to a certain position in the key stream. :param integer position: The absolute position within the key stream, in bytes. """ position, offset = divmod(position, 64) block_low = position & 0xFFFFFFFF block_high = position >> 32 result = _raw_chacha20_lib.chacha20_seek(self._state.get(), c_ulong(block_high), c_ulong(block_low), offset) if result: raise ValueError("Error %d while seeking with ChaCha20" % result)
def __irshift__(self, pos): if pos < 0: raise ValueError("negative shift count") if pos > 65536: if self < 0: return -1 else: return 0 _gmp.mpz_tdiv_q_2exp(self._mpz_p, self._mpz_p, c_ulong(int(pos))) return self
def fail_if_divisible_by(self, small_prime): """Raise an exception if the small prime is a divisor.""" if isinstance(small_prime, int): if 0 < small_prime < 65536: if _gmp.mpz_divisible_ui_p(self._mpz_p, c_ulong(small_prime)): raise ValueError("The value is composite") return small_prime = Integer(small_prime) if _gmp.mpz_divisible_p(self._mpz_p, small_prime._mpz_p): raise ValueError("The value is composite")
def get_bit(self, n): """Return True if the n-th bit is set to 1. Bit 0 is the least significant.""" if self < 0: raise ValueError("no bit representation for negative values") if n < 0: raise ValueError("negative bit count") if n > 65536: return 0 return bool(_gmp.mpz_tstbit(self._mpz_p, c_ulong(int(n))))
def gcd(self, term): """Compute the greatest common denominator between this number and another term.""" result = Integer(0) if isinstance(term, int): if 0 < term < 65535: _gmp.mpz_gcd_ui(result._mpz_p, self._mpz_p, c_ulong(term)) return result term = Integer(term) _gmp.mpz_gcd(result._mpz_p, self._mpz_p, term._mpz_p) return result
def __ilshift__(self, pos): if not 0 <= pos < 65536: raise ValueError("Incorrect shift count") _gmp.mpz_mul_2exp(self._mpz_p, self._mpz_p, c_ulong(int(pos))) return self
def __lshift__(self, pos): result = Integer(0) if not 0 <= pos < 65536: raise ValueError("Incorrect shift count") _gmp.mpz_mul_2exp(result._mpz_p, self._mpz_p, c_ulong(int(pos))) return result
class Integer(object): """A fast, arbitrary precision integer""" _zero_mpz_p = new_mpz() _gmp.mpz_init_set_ui(_zero_mpz_p, c_ulong(0)) def __init__(self, value): """Initialize the integer to the given value.""" self._mpz_p = new_mpz() self._initialized = False if isinstance(value, float): raise ValueError("A floating point type is not a natural number") self._initialized = True if isinstance(value, int): _gmp.mpz_init(self._mpz_p) result = _gmp.gmp_sscanf(tobytes(str(value)), b("%Zd"), self._mpz_p) if result != 1: raise ValueError("Error converting '%d'" % value) else: _gmp.mpz_init_set(self._mpz_p, value._mpz_p) # Conversions def __int__(self): # buf will contain the integer encoded in decimal plus the trailing # zero, and possibly the negative sign. # dig10(x) < log10(x) + 1 = log2(x)/log2(10) + 1 < log2(x)/3 + 1 buf_len = _gmp.mpz_sizeinbase(self._mpz_p, 2) // 3 + 3 buf = create_string_buffer(buf_len) _gmp.gmp_snprintf(buf, c_size_t(buf_len), b("%Zd"), self._mpz_p) return int(get_c_string(buf)) def __str__(self): return str(int(self)) def __repr__(self): return "Integer(%s)" % str(self) def to_bytes(self, block_size=0): """Convert the number into a byte string. This method encodes the number in network order and prepends as many zero bytes as required. It only works for non-negative values. :Parameters: block_size : integer The exact size the output byte string must have. If zero, the string has the minimal length. :Returns: A byte string. :Raise ValueError: If the value is negative or if ``block_size`` is provided and the length of the byte string would exceed it. """ if self < 0: raise ValueError("Conversion only valid for non-negative numbers") buf_len = (_gmp.mpz_sizeinbase(self._mpz_p, 2) + 7) // 8 if buf_len > block_size > 0: raise ValueError("Number is too big to convert to byte string" "of prescribed length") buf = create_string_buffer(buf_len) _gmp.mpz_export( buf, null_pointer, # Ignore countp 1, # Big endian c_size_t(1), # Each word is 1 byte long 0, # Endianess within a word - not relevant c_size_t(0), # No nails self._mpz_p) return bchr(0) * max(0, block_size - buf_len) + get_raw_buffer(buf) @staticmethod def from_bytes(byte_string): """Convert a byte string into a number. :Parameters: byte_string : byte string The input number, encoded in network order. It can only be non-negative. :Return: The ``Integer`` object carrying the same value as the input. """ result = Integer(0) _gmp.mpz_import( result._mpz_p, c_size_t(len(byte_string)), # Amount of words to read 1, # Big endian c_size_t(1), # Each word is 1 byte long 0, # Endianess within a word - not relevant c_size_t(0), # No nails byte_string) return result # Relations def _apply_and_return(self, func, term): if not isinstance(term, Integer): term = Integer(term) return func(self._mpz_p, term._mpz_p) def __eq__(self, term): if not isinstance(term, (Integer, int)): return False return self._apply_and_return(_gmp.mpz_cmp, term) == 0 def __ne__(self, term): if not isinstance(term, (Integer, int)): return True return self._apply_and_return(_gmp.mpz_cmp, term) != 0 def __lt__(self, term): return self._apply_and_return(_gmp.mpz_cmp, term) < 0 def __le__(self, term): return self._apply_and_return(_gmp.mpz_cmp, term) <= 0 def __gt__(self, term): return self._apply_and_return(_gmp.mpz_cmp, term) > 0 def __ge__(self, term): return self._apply_and_return(_gmp.mpz_cmp, term) >= 0 def __bool__(self): return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) != 0 def is_negative(self): return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) < 0 # Arithmetic operations def __add__(self, term): result = Integer(0) if not isinstance(term, Integer): term = Integer(term) _gmp.mpz_add(result._mpz_p, self._mpz_p, term._mpz_p) return result def __sub__(self, term): result = Integer(0) if not isinstance(term, Integer): term = Integer(term) _gmp.mpz_sub(result._mpz_p, self._mpz_p, term._mpz_p) return result def __mul__(self, term): result = Integer(0) if not isinstance(term, Integer): term = Integer(term) _gmp.mpz_mul(result._mpz_p, self._mpz_p, term._mpz_p) return result def __floordiv__(self, divisor): if not isinstance(divisor, Integer): divisor = Integer(divisor) if _gmp.mpz_cmp(divisor._mpz_p, self._zero_mpz_p) == 0: raise ZeroDivisionError("Division by zero") result = Integer(0) _gmp.mpz_fdiv_q(result._mpz_p, self._mpz_p, divisor._mpz_p) return result def __mod__(self, divisor): if not isinstance(divisor, Integer): divisor = Integer(divisor) comp = _gmp.mpz_cmp(divisor._mpz_p, self._zero_mpz_p) if comp == 0: raise ZeroDivisionError("Division by zero") if comp < 0: raise ValueError("Modulus must be positive") result = Integer(0) _gmp.mpz_mod(result._mpz_p, self._mpz_p, divisor._mpz_p) return result def inplace_pow(self, exponent, modulus=None): if modulus is None: if exponent < 0: raise ValueError("Exponent must not be negative") # Normal exponentiation if exponent > 256: raise ValueError("Exponent is too big") _gmp.mpz_pow_ui( self._mpz_p, self._mpz_p, # Base c_ulong(int(exponent))) else: # Modular exponentiation if not isinstance(modulus, Integer): modulus = Integer(modulus) if not modulus: raise ZeroDivisionError("Division by zero") if modulus.is_negative(): raise ValueError("Modulus must be positive") if isinstance(exponent, int): if exponent < 0: raise ValueError("Exponent must not be negative") if exponent < 65536: _gmp.mpz_powm_ui(self._mpz_p, self._mpz_p, c_ulong(exponent), modulus._mpz_p) return self exponent = Integer(exponent) elif exponent.is_negative(): raise ValueError("Exponent must not be negative") _gmp.mpz_powm(self._mpz_p, self._mpz_p, exponent._mpz_p, modulus._mpz_p) return self def __pow__(self, exponent, modulus=None): result = Integer(self) return result.inplace_pow(exponent, modulus) def __abs__(self): result = Integer(0) _gmp.mpz_abs(result._mpz_p, self._mpz_p) return result def sqrt(self, modulus=None): """Return the largest Integer that does not exceed the square root""" if modulus is None: if self < 0: raise ValueError("Square root of negative value") result = Integer(0) _gmp.mpz_sqrt(result._mpz_p, self._mpz_p) else: if modulus <= 0: raise ValueError("Modulus must be positive") modulus = int(modulus) result = Integer( SlowInteger._tonelli_shanks(int(self) % modulus, modulus)) return result def __iadd__(self, term): if isinstance(term, int): if 0 <= term < 65536: _gmp.mpz_add_ui(self._mpz_p, self._mpz_p, c_ulong(term)) return self if -65535 < term < 0: _gmp.mpz_sub_ui(self._mpz_p, self._mpz_p, c_ulong(-term)) return self term = Integer(term) _gmp.mpz_add(self._mpz_p, self._mpz_p, term._mpz_p) return self def __isub__(self, term): if isinstance(term, int): if 0 <= term < 65536: _gmp.mpz_sub_ui(self._mpz_p, self._mpz_p, c_ulong(term)) return self if -65535 < term < 0: _gmp.mpz_add_ui(self._mpz_p, self._mpz_p, c_ulong(-term)) return self term = Integer(term) _gmp.mpz_sub(self._mpz_p, self._mpz_p, term._mpz_p) return self def __imul__(self, term): if isinstance(term, int): if 0 <= term < 65536: _gmp.mpz_mul_ui(self._mpz_p, self._mpz_p, c_ulong(term)) return self if -65535 < term < 0: _gmp.mpz_mul_ui(self._mpz_p, self._mpz_p, c_ulong(-term)) _gmp.mpz_neg(self._mpz_p, self._mpz_p) return self term = Integer(term) _gmp.mpz_mul(self._mpz_p, self._mpz_p, term._mpz_p) return self def __imod__(self, divisor): if not isinstance(divisor, Integer): divisor = Integer(divisor) comp = _gmp.mpz_cmp(divisor._mpz_p, divisor._zero_mpz_p) if comp == 0: raise ZeroDivisionError("Division by zero") if comp < 0: raise ValueError("Modulus must be positive") _gmp.mpz_mod(self._mpz_p, self._mpz_p, divisor._mpz_p) return self # Boolean/bit operations def __and__(self, term): result = Integer(0) if not isinstance(term, Integer): term = Integer(term) _gmp.mpz_and(result._mpz_p, self._mpz_p, term._mpz_p) return result def __or__(self, term): result = Integer(0) if not isinstance(term, Integer): term = Integer(term) _gmp.mpz_ior(result._mpz_p, self._mpz_p, term._mpz_p) return result def __rshift__(self, pos): result = Integer(0) if pos < 0: raise ValueError("negative shift count") if pos > 65536: if self < 0: return -1 else: return 0 _gmp.mpz_tdiv_q_2exp(result._mpz_p, self._mpz_p, c_ulong(int(pos))) return result def __irshift__(self, pos): if pos < 0: raise ValueError("negative shift count") if pos > 65536: if self < 0: return -1 else: return 0 _gmp.mpz_tdiv_q_2exp(self._mpz_p, self._mpz_p, c_ulong(int(pos))) return self def __lshift__(self, pos): result = Integer(0) if not 0 <= pos < 65536: raise ValueError("Incorrect shift count") _gmp.mpz_mul_2exp(result._mpz_p, self._mpz_p, c_ulong(int(pos))) return result def __ilshift__(self, pos): if not 0 <= pos < 65536: raise ValueError("Incorrect shift count") _gmp.mpz_mul_2exp(self._mpz_p, self._mpz_p, c_ulong(int(pos))) return self def get_bit(self, n): """Return True if the n-th bit is set to 1. Bit 0 is the least significant.""" if self < 0: raise ValueError("no bit representation for negative values") if n < 0: raise ValueError("negative bit count") if n > 65536: return 0 return bool(_gmp.mpz_tstbit(self._mpz_p, c_ulong(int(n)))) # Extra def is_odd(self): return _gmp.mpz_tstbit(self._mpz_p, 0) == 1 def is_even(self): return _gmp.mpz_tstbit(self._mpz_p, 0) == 0 def size_in_bits(self): """Return the minimum number of bits that can encode the number.""" if self < 0: raise ValueError("Conversion only valid for non-negative numbers") return _gmp.mpz_sizeinbase(self._mpz_p, 2) def size_in_bytes(self): """Return the minimum number of bytes that can encode the number.""" return (self.size_in_bits() - 1) // 8 + 1 def is_perfect_square(self): return _gmp.mpz_perfect_square_p(self._mpz_p) != 0 def fail_if_divisible_by(self, small_prime): """Raise an exception if the small prime is a divisor.""" if isinstance(small_prime, int): if 0 < small_prime < 65536: if _gmp.mpz_divisible_ui_p(self._mpz_p, c_ulong(small_prime)): raise ValueError("The value is composite") return small_prime = Integer(small_prime) if _gmp.mpz_divisible_p(self._mpz_p, small_prime._mpz_p): raise ValueError("The value is composite") def multiply_accumulate(self, a, b): """Increment the number by the product of a and b.""" if not isinstance(a, Integer): a = Integer(a) if isinstance(b, int): if 0 < b < 65536: _gmp.mpz_addmul_ui(self._mpz_p, a._mpz_p, c_ulong(b)) return self if -65535 < b < 0: _gmp.mpz_submul_ui(self._mpz_p, a._mpz_p, c_ulong(-b)) return self b = Integer(b) _gmp.mpz_addmul(self._mpz_p, a._mpz_p, b._mpz_p) return self def set(self, source): """Set the Integer to have the given value""" if not isinstance(source, Integer): source = Integer(source) _gmp.mpz_set(self._mpz_p, source._mpz_p) return self def inplace_inverse(self, modulus): """Compute the inverse of this number in the ring of modulo integers. Raise an exception if no inverse exists. """ if not isinstance(modulus, Integer): modulus = Integer(modulus) comp = _gmp.mpz_cmp(modulus._mpz_p, self._zero_mpz_p) if comp == 0: raise ZeroDivisionError("Modulus cannot be zero") if comp < 0: raise ValueError("Modulus must be positive") result = _gmp.mpz_invert(self._mpz_p, self._mpz_p, modulus._mpz_p) if not result: raise ValueError("No inverse value can be computed") return self def inverse(self, modulus): result = Integer(self) result.inplace_inverse(modulus) return result def gcd(self, term): """Compute the greatest common denominator between this number and another term.""" result = Integer(0) if isinstance(term, int): if 0 < term < 65535: _gmp.mpz_gcd_ui(result._mpz_p, self._mpz_p, c_ulong(term)) return result term = Integer(term) _gmp.mpz_gcd(result._mpz_p, self._mpz_p, term._mpz_p) return result def lcm(self, term): """Compute the least common multiplier between this number and another term.""" result = Integer(0) if not isinstance(term, Integer): term = Integer(term) _gmp.mpz_lcm(result._mpz_p, self._mpz_p, term._mpz_p) return result @staticmethod def jacobi_symbol(a, n): """Compute the Jacobi symbol""" if not isinstance(a, Integer): a = Integer(a) if not isinstance(n, Integer): n = Integer(n) if n <= 0 or n.is_even(): raise ValueError("n must be positive even for the Jacobi symbol") return _gmp.mpz_jacobi(a._mpz_p, n._mpz_p) # Clean-up def __del__(self): try: if self._mpz_p is not None: if self._initialized: _gmp.mpz_clear(self._mpz_p) self._mpz_p = None except AttributeError: pass