示例#1
0
def keyMaker(p, q, k):
    #Checking  if inputs are prime
    if cryptoMath.gcd(p, q) != 1:
        return None
    rsaModulus = p * q
    euilersToitent = (p - 1) * (q - 1)
    e = 1
    for i in range(euilersToitent - 1, 1, -1):
        if cryptoMath.gcd(i, rsaModulus) == 1:
            e = i
            break
    # Public Key = rsaModulus and e
    d = (k * euilersToitent + 1) // e
    return [[e, rsaModulus], [d, rsaModulus]]
示例#2
0
def generateKey(keySize):
    # Creates a public/private key pair with keys that are keySize bits in
    # size. This function may take a while to run.

    # Step 1: Create two prime numbers, p and q. Calculate n = p * q.
    print('Generating p prime...')
    p = rabinMiller.generateLargePrime(keySize)
    print('Generating q prime...')
    q = rabinMiller.generateLargePrime(keySize)
    n = p * q

    # Step 2: Create a number e that is relatively prime to (p-1)*(q-1).
    print('Generating e that is relatively prime to (p-1)*(q-1)...')
    while True:
        # Keep trying random numbers for e until one is valid.
        e = random.randrange(2 ** (keySize - 1), 2 ** (keySize))
        if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
            break

    # Step 3: Calculate d, the mod inverse of e.
    print('Calculating d that is mod inverse of e...')
    d = cryptoMath.findModInverse(e, (p - 1) * (q - 1))

    publicKey = (n, e)
    privateKey = (n, d)

    print('Public key:', publicKey)
    print('Private key:', privateKey)

    return (publicKey, privateKey)
示例#3
0
def hackAffine(message):
    print 'Hacking...'

    # Python programs can be stopped at any time by pressing
    # Ctrl-C (on Windows) or Ctrl-D (on Mac and Linux)
    print '(Press Ctrl-C or Ctrl-D to quit at any time.)'

    # brute-force by looping through every possible key
    for key in range(len(affineCipher.SYMBOLS)**2):
        keyA = affineCipher.getKeyParts(key)[0]
        if cryptoMath.gcd(keyA, len(affineCipher.SYMBOLS)) != 1:
            continue

        decryptedText = affineCipher.decryptMessage(key, message)
        if not SILENT_MODE:
            print 'Tried Key %s: ... (%s)' % (key, decryptedText[:40])

        if detectEnglish.isEnglish(decryptedText):
            # Check with the user if the decrypted key has been found.
            print ''
            print 'Possible encryption hack:'
            print 'Key: %s' % (key)
            print 'Decrypted message: ' + decryptedText[:200]
            print ''
            print 'Enter D for done, or just press Enter to continue hacking:'
            response = raw_input('> ')

            if response.strip().upper().startswith('D'):
                return decryptedText
    return None
def getRandomKey():
    while True:
        keyA = random.randint(2, len(SYMBOLS))
        keyB = random.randint(2, len(SYMBOLS))

        if cryptoMath.gcd(keyA, len(SYMBOLS)) == 1:
            return keyA * len(SYMBOLS) + keyB
示例#5
0
    def generateKey(self):
        # Creates a public/private key pair with keys that are keySize bits in
        # size. This function may take a while to run.

        # Step 1: Create two prime numbers, p and q. Calculate n = p * q.
        print('Generating p prime...')
        p = rabinMiller.generateLargePrime(self.keySize)
        print('Generating q prime...')
        q = rabinMiller.generateLargePrime(self.keySize)
        n = p * q

        # Step 2: Create a number e that is relatively prime to (p-1)*(q-1).
        print('Generating e that is relatively prime to (p-1)*(q-1)...')
        while True:
            # Keep trying random numbers for e until one is valid.
            e = random.randrange(2**(self.keySize - 1), 2**(self.keySize))
            if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
                break

        # Step 3: Calculate d, the mod inverse of e.
        print('Calculating d that is mod inverse of e...')
        d = cryptoMath.modinv(e, (p - 1) * (q - 1))

        self.publicKey = (n, e)
        self.privateKey = (n, d)

        print('Public key:', self.publicKey)
        print('Private key:', self.privateKey)
        print()
示例#6
0
def generateKey(keySize):
    p = 0
    q = 0

    print('Generating p prime...')
    while p == 1:
        p = primeNum.generaeLargePrime(keySize)
        q = primeNum.generaeLargePrime(keySize)
    n = p * q

    print('Generating e that is relatively prime to (p - 1) * (q - 1)...')
    while True:
        e = random.randrange(2 ** (keySize - 1), 2 ** (keySize))
        if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
            break

    print('Calculating d that is mod inverse of e...')
    d = cryptoMath.findModInverse(e (p - 1) * (q - 1))

    publicKey = (n, e)
    privateKey = (n, d)

    print('Public key:', publicKey)
    print('Private key:', privateKey)

    return(publicKey, privateKey)
示例#7
0
def hackAffine(message):
    print 'Hacking...'

    # Python programs can be stopped at any time by pressing 
    # Ctrl-C (on Windows) or Ctrl-D (on Mac and Linux)
    print '(Press Ctrl-C or Ctrl-D to quit at any time.)'

    # brute-force by looping through every possible key
    for key in range(len(affineCipher.SYMBOLS) ** 2):
        keyA = affineCipher.getKeyParts(key)[0]
        if cryptoMath.gcd(keyA, len(affineCipher.SYMBOLS)) != 1:
            continue

        decryptedText = affineCipher.decryptMessage(key, message)
        if not SILENT_MODE:
            print 'Tried Key %s: ... (%s)' % (key, decryptedText[:40])

        if detectEnglish.isEnglish(decryptedText):
            # Check with the user if the decrypted key has been found.
            print ''
            print 'Possible encryption hack:'
            print 'Key: %s' % (key)
            print 'Decrypted message: ' + decryptedText[:200]
            print ''
            print 'Enter D for done, or just press Enter to continue hacking:'
            response = raw_input('> ')

            if response.strip().upper().startswith('D'):
                return decryptedText
    return None
示例#8
0
def checkKeys(keyA, keyB, mode):
    if keyA == 1 and mode == 'encrypt':
        sys.exit('The affine cipher becomes incredibly weak when key A is set to 1. Choose a different key.')
    if keyB == 0 and mode == 'encrypt':
        sys.exit('The affine cipher becomes incredibly weak when key B is set to 0. Choose a different key.')
    if keyA < 0 or keyB < 0 or keyB > len(SYMBOLS) - 1:
        sys.exit('Key A must be greater than 0 and Key B must be between 0 and %s.' % (len(SYMBOLS) - 1))
    if cryptoMath.gcd(keyA, len(SYMBOLS)) != 1:
        sys.exit('Key A (%s) and the symbol set size (%s) are not relatively prime. Choose a different key.' % (keyA, len(SYMBOLS)))
def main():
    multi = MultiplicativeCipher(104729,13)
    cipherText = multi.encrypt("this is a super awesome year '2000' message!!!")
    print(cipherText)
    for i in range(95):
        for j in range(95):
            if cryptoMath.gcd(i,95) == 1:
                multi.setKeys(i,j)
                decoded = multi.decrypt(cipherText)
                print(decoded)
示例#10
0
def main():
    multi = MultiplicativeCipher(104729, 13)
    cipherText = multi.encrypt(
        "this is a super awesome year '2000' message!!!")
    print(cipherText)
    for i in range(95):
        for j in range(95):
            if cryptoMath.gcd(i, 95) == 1:
                multi.setKeys(i, j)
                decoded = multi.decrypt(cipherText)
                print(decoded)
示例#11
0
def checkKeys(keyA, keyB, mode):
    if keyA == 1 and mode == 'encrypt':
        sys.exit('Cipher is weak if key A is 1. Choose a different key.')
    if keyB == 0 and mode == 'encrypt':
        sys.exit('Cipher is weak if key B is 0. Choose a different key.')
    if keyA < 0 or keyB < 0 or keyB > len(SYMBOLS) - 1:
        sys.exit(
            'Key A must be greater than 0 and Key B must be between 0 and %s.'
            % (len(SYMBOLS) - 1))
    if cryptoMath.gcd(keyA, len(SYMBOLS)) != 1:
        sys.exit(
            'Key A (%s) and the symbol set size (%s) are not relatively prime. \n Choose a different Key.'
            % (keyA, len(SYMBOLS)))
def generateKey(keySize):
    p = 0
    q = 0
    while p == q:
        p = primeNum.generateLargePrime(keySize)
        q = primeNum.generateLargePrime(keySize)
    n = p * q
    while True:
        e = random.randrange(2**(keySize - 1), 2**keySize)
        if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
            break
    d = cryptoMath.findModInverse(e, (p - 1) * (q - 1))
    publicKey = (n, e)
    privateKey = (n, d)

    return publicKey, privateKey
示例#13
0
def checkKeys(keyA, keyB, mode):
    if keyA == 1 and mode == 'encrypt':
        sys.exit(
            'The affine cipher becomes incredibly weak when key A is set to 1. Choose a different key.'
        )
    if keyB == 0 and mode == 'encrypt':
        sys.exit(
            'The affine cipher becomes incredibly weak when key B is set to 0. Choose a different key.'
        )
    if keyA < 0 or keyB < 0 or keyB > len(SYMBOLS) - 1:
        sys.exit(
            'Key A must be greater than 0 and Key B must be between 0 and %s.'
            % (len(SYMBOLS) - 1))
    if cryptoMath.gcd(keyA, len(SYMBOLS)) != 1:
        sys.exit(
            'Key A (%s) and the symbol set size (%s) are not relatively prime. Choose a different key.'
            % (keyA, len(SYMBOLS)))
示例#14
0
def createKey(keysize):
    p = 0
    q = 0
    e = 0
    d = 0
    print('finding p, q, and n')
    while q == p:
        q = primeNum.generateLargePrime(keysize=1024)
        p = primeNum.generateLargePrime(keysize=1024)
    n = p * q

    print('finding e')
    while cryptoMath.gcd(e, (p - 1) * (q - 1)) != 1:
        e = random.randrange(2**(keysize - 1), 2**(keysize))

    print('finding d')
    d = cryptoMath.findModInverse(e, (p - 1) * (q - 1))

    publicKey = (n, e)
    privateKey = (n, d)

    return (publicKey, privateKey)
示例#15
0
def hackAffine(message):
    print('Hacking...')

    for key in range(len(affineCipher.SYMBOLS) ** 2):
        keyA = affineCipher.getKeyParts(key)[0]
        if cryptoMath.gcd(keyA, len(affineCipher.SYMBOLS)) != 1:
            continue

        decryptedText = affineCipher.decryptMessage(key, message)
        if not SILENT_MODE:
            print('Tried key %s... (%s)' % (key, decryptedText[:40]))
        
        if detectEnglish.isEnglish(decryptedText):
            print()
            print('Possible encryption hack:')
            print('Key: %s' % (key))
            print('Decrypted message: ' + decryptedText[:200])

            response = input('>')
            if response.strip().upper().startswith('D'):
                return decryptedText
    
    return None
示例#16
0
def getRandomKey():
    while True:
        keyA = random.randint(2, len(SYMBOLS))
        keyB = random.randint(2, len(SYMBOLS))
        if cryptoMath.gcd(keyA, len(SYMBOLS)) == 1:
            return keyA * len(SYMBOLS) + keyB
示例#17
0
# This program proves that the keyspace of the affine cipher is limited
# to len(SYMBOLS) ^ 2.

import affineCipher, cryptoMath

message = 'Make things as simple as possible, but not simpler.'
for keyA in range(2, 100):
    key = keyA * len(affineCipher.SYMBOLS) + 1

    if cryptoMath.gcd(keyA, len(affineCipher.SYMBOLS)) == 1:
        print(keyA, affineCipher.encryptMessage(key, message))