from cryptoml.util.selection_pipeline import Pipeline from cryptoml.util.import_proxy import SimpleImputer, StandardScaler, MinMaxScaler, XGBClassifier PARAMETER_GRID = {} PARAMETERS = { "colsample_bylevel": 0.8, "colsample_bynode": 1, "colsample_bytree": 0.8, "learning_rate": 0.3, "max_depth": 6, "n_estimators": 500, "num_parallel_tree": 1, "reg_alpha": 0, "reg_lambda": 1, "subsample": 1, "use_label_encoder": False, "seed": None, "random_state": 0, "objective": "multi:softmax", "eval_metric": "mlogloss" } estimator = Pipeline([ ('i', SimpleImputer(strategy="mean")), # Replace nan's with the mean value between previous and next observation ('s', StandardScaler()), # Standardize data so that Mean and StdDev are < 1 ('c', XGBClassifier(**PARAMETERS)), ])
from cryptoml.util.selection_pipeline import Pipeline from sklearn.ensemble import RandomForestClassifier from cryptoml.util.import_proxy import SimpleImputer, StandardScaler, MinMaxScaler PARAMETER_GRID = { 'c__n_estimators': [100, 200, 500], 'i__strategy': ['mean'], # 'median', 'most_frequent', 'constant' 'c__criterion': ['gini'], # , 'entropy'], 'c__max_depth': [2, 3, 4], 'c__min_samples_split': [2], 'c__min_samples_leaf': [1, 0.05, 0.2], 'c__max_features': ['auto'], # 'sqrt', 'c__class_weight': [None, 'balanced'], #, 'balanced_subsample' } estimator = Pipeline([ ( 'i', SimpleImputer() ), # Replace nan's with the median value between previous and next observation ( 's', StandardScaler() ), # Scale data in order to center it and increase robustness against noise and outliers ('c', RandomForestClassifier()), ])
from cryptoml.util.selection_pipeline import Pipeline from sklearn.svm import SVC from cryptoml.util.import_proxy import SimpleImputer, MinMaxScaler, StandardScaler PARAMETER_GRID = { 'c__C': [1, 5, 10], # Regularization parameter. The strength of the regularization is inversely proportional to C. >0 'c__kernel': ['poly'], 'c__gamma': ['scale', 'auto'], # Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. (default = 'scale') 'c__degree': [2, 3, 4], # Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels. # Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’. 'c__class_weight': [None, 'balanced'] } estimator = Pipeline([ ('i', SimpleImputer()), # Replace nan's with the median value between previous and next observation ('s', StandardScaler()), # Scale data in order to center it and increase robustness against noise and outliers #('n', MinMaxScaler()), # Scale data in order to center it and increase robustness against noise and outliers ('c', SVC(probability=True)), ])